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a b s t r a c t 

Bottom-up methods and general Bayesian framework for saliency detection commonly suffer from two 

drawbacks. First, they are sensitive to background noise, thus background regions similar to objects are 

also highlighted. Second, they only consider appearance features and thus object with several different 

parts will not be highlighted uniformly. In this paper, we propose a novel and unified geodesic weighted 

Bayesian model which considers spatial relationship by reformulating Bayes’ formula. First, we infer a 

more precise initial salient regions via fully connected CRF model. Second, to highlight the whole object 

uniformly, we learn a robust measure of region similarity which describes the probability of two regions 

belonging to the same object, so regions belonging to the same object will be given similar saliency 

value. Third, using our learnt region similarity as edge weight, we construct an undirected weighted 

graph to compute geodesic distance of regions. Regions with short geodesic distance from initial salient 

regions will be attached more importance, thus suppressing background noise. By using results of existing 

methods as prior distribution, our model can integrate into all methods and improve their performance. 

Experiments on benchmark datasets demonstrate that our model can significantly improve the quality of 

saliency detection. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Salient object detection has been an important research field in 

computer vision , with its wide applications such as image seg- 

mentation [24] , object recognition [25] and object detection [5] . 

Since saliency detection is a class-agnostic task and it lacks a clear 

definition, almost all bottom-up methods try to compute saliency 

map using some assumptions on salient object and background, 

such as center-surround difference [8,17] , center prior [10,16] and 

backgroundness prior [27] . These assumptions are based on the ob- 

servation that salient objects usually have high contrast with other 

regions and they mostly lie on the center of an image. 

However, these methods suffer from two main drawbacks. First, 

they are sensitive to background noise when the background is 

complex. Second, they are unable to uniformly highlight the whole 

salient object when the object has some parts looking differently. 

Some examples are shown in Fig. 1 . 
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The Bayesian framework is an effective model to address the 

above problems. Xie et al. [28] proposed a Bayesian model us- 

ing low and mid-level cues which achieved state-of-the-art result. 

However, it also showed weaknesses in the above two issues since 

general Bayesian framework only considers the appearance feature 

while the spatial relationship is ignored. 

In this paper, we propose a novel geodesic weighted Bayesian 

model (GWB) which considers spatial relationship by attaching 

more importance to regions which are more likely to be parts 

of salient objects. Our main contributions are threefold. First, we 

propose a fully connected CRF model to infer more precise initial 

salient regions, thus making the computation of observation like- 

lihood in the Bayesian framework more accurate. Second, to high- 

light the whole object uniformly, we learn a robust region simi- 

larity to measure the probability of two regions belonging to the 

same object. With that, regions that have high probability to be 

one object will be given similar saliency value. Third, we construct 

an undirected weighted graph using our proposed region similarity 

as edge weight to compute geodesic distance. Then regions with 

short geodesic distance from the initial salient regions will be at- 

tached more importance. Thus the object regions are highlighted 

and the background is suppressed. 

In contrast to [28] which computes prior distribution via time- 

consuming superpixel clustering, we use saliency maps of existing 

http://dx.doi.org/10.1016/j.patrec.2016.02.008 

0167-8655/© 2016 Elsevier B.V. All rights reserved. 



2 X. Wang et al. / Pattern Recognition Letters 75 (2016) 1–8 

Fig. 1. Some examples. (a) Source images, saliency maps generated by (b) Cheng et al. [6] , (c) Wei et al. [27] , (d) Xie et al. [28] , (e) Kim et al. [11] , (f) our proposed method, 

and (g) ground truth. Compared with these methods, our results are more uniform and the background noise is strongly suppressed. 

methods as prior distribution, so our model can be integrated into 

existing methods and improve their performance. 

This paper provides a more complete understanding of the GWB 

model first presented in the previous conference version [26] . We 

improve the previous framework in two aspects. First, instead of 

using binarized region contrast map as initial salient regions, we 

propose a fully connected CRF model to infer more precise initial 

salient regions. Second, a two-layer neighborhood graph is con- 

structed to handle the case of occlusion in computing geodesic dis- 

tance. Further details on background, motivation, method, analy- 

sis and evaluation and also given. Experiments on a broader range 

of datasets are conducted which demonstrate that our model ef- 

fectively improve existing methods to state-of-the-art performance 

level, even though the original saliency maps are not satisfying. 

The rest of this paper is organized as follows. Section 2 intro- 

duces and compares with related work, Section 3 introduces the 

details of the proposed model, Section 4 presents the experiments 

and conclusion is made in Section 5 . 

2. Related work 

CRF/MRF is an energy minimum model which has been widely 

applied in semantic segmentation and salient object detection 

[3,4,7,9,12,13,23,31] . According to their purposes, these methods 

can be classified into two categories: segmentation [13,23] and es- 

timation [3,4,7,9,12,31] . 

Rahtu et al. [23] proposed to segment salient object from im- 

ages and videos using CRF with unary saliency term and color 

term. While traditional adjacency CRF models only consider neigh- 

boring nodes in the pairwise term, fully connected CRF can rep- 

resent long-range interactions and thus making the segmentation 

results more accurate. However, the computation for inferring fully 

connected CRF is very expensive. Krähenbühl and Koltun [13] pro- 

posed an efficient inference algorithm which makes the fully con- 

nected CRF model practical. They defined the fully connected CRF 

on pixels and applied it to semantic segmentation. In this pa- 

per, we propose a fully connected CRF model to segment initial 

salient regions for computing likelihoods in Bayesian framework 

( Section 3.2 ) similar with [13] , but we define the CRF model on 

superpixels considering that pixels in the same superpixel mostly 

share the same saliency value, we also utilize more features which 

are complementary. With that, we can segment more accurate ini- 

tial salient region with high efficiency (33 FPS, see Section 4.1 ). 

On the other hand, CRF/MRF model can be used for saliency es- 

timation. Kocak et al. [12] and Yang et al. [31] proposed to jointly 

learn category-specific dictionary and CRF to localize salient ob- 

jects with specific category. Jia and Han [9] proposed to use ob- 

jectness score as coarse saliency map and then refine it via MRF 

by adding two abstract nodes which are connected with all other 

nodes to get final saliency map. Fu et al. [7] proposed to smooth 

spatial-temporal saliency map in videos via CRF by constructing a 

two-frame graph. Aytekin et al. [3,4] proposed quantum cuts for 

salient object detection by linking quantum mechanics with spec- 

tral graph clustering. 

Bayesian Framework is a probability formula which computes 

posterior distribution via prior distribution and observation like- 

lihood. Rahtu et al. [23] proposed to measure saliency by applying 

Bayes’ formula in sliding windows and comparing pixels inside and 

outside the rectangular inner window. Li et al. [15] proposed to es- 

timate saliency map via dense and sparse reconstruction and then 

integrate these two maps via Bayesian framework by taking one 

saliency map as prior distribution and using the other one as like- 

lihood. However, they got initial salient regions by binarizing the 

prior map with a threshold, which is less accurate and may bring 

bias since the initial salient regions are strongly correlated with 

the prior distribution. The closest work to ours is [28] . In [28] , the 

initial salient regions is defined as a convex hull formed by inter- 

est points, and the prior distribution is defined as the overlap be- 

tween convex hull and superpixel clustering partitions. We differ 

from that in three aspects. First, we propose a fully connected CRF 

model to infer initial salient regions which are more accurate than 

that in [28] . Second, we apply Bayesian framework as a unified op- 

timization framework which takes existing saliency maps as prior 

distribution while Xie et al. computed prior distribution by time- 

consuming superpixel clustering method. Third, general Bayesian 

framework suffers from highlighting background regions with sim- 

ilar appearance features with salient object. We address this issue 

by considering spatial relationship in formulating observation like- 

lihood and thus the background regions are strongly suppressed 

and the salient objects are highlighted uniformly. 

3. Approach 

3.1. Overview 

Given an image, we first segment it into superpixels (i.e., re- 

gions, used interchangeably in this paper) using the SLIC algorithm 

[2] . Then as in [28] , the Bayesian inference for estimating saliency 

map is formulated as: 

p(sal| v ) = 

p(sal) p(v | sal) 

p(sal) p(v | sal) + p(bg) p(v | bg) 
, (1) 

where p ( sal ) and p(bg) = 1 − p(sal) denote the prior distribution 

of the salient regions and background, respectively. v denotes the 

feature vector of a given pixel. p ( v | sal ) and p ( v | bg ) (shorthand 

for p(v | sal = 1) and p(v | bg = 1) ) denote the observation likelihood 

which are computed inside and outside the initial salient regions, 

respectively. In our work, the initial salient regions are inferred us- 

ing a fully connected CRF model ( Section 3.2 ). We take saliency 

maps of existing methods as prior distribution p ( sal ) and com- 

pute posterior distribution p ( sal | v ) via Bayes’ formula as the im- 

proved version of the existing maps. So our method is a unified 
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Fig. 2. Overview of the proposed approach. At stage I, we formulate the GWB model, and at stage II, we improve saliency map of existing methods via GWB to get a better 

map. (a) Segment source image into superpixels, (b) fully connected CRF model for inferring (c) initial salient regions, (d) compute geodesic distance using our learnt region 

similarity as edge weight and (e) form geodesic weight which is defined as normalized mean geodesic distance from initial salient regions. So far, we get geodesic weighted 

Bayesian model (GWB) by reformulating Bayes’ formula ( Eqs. (1) –(3) ). At stage II, we compute (f) LAB color feature and LBP texture feature at each pixel as feature vector v 

and use (g) saliency map of existing methods as prior distribution to infer a more precise saliency map (i) via (h) GWB. 

optimization framework which only takes prior maps and source 

images as input. 

While the general Bayesian framework suffers from highlight- 

ing background regions similar to the salient objects, we consider 

spatial relationship by attaching more importance to regions which 

are more likely to be parts of a salient object, thus suppressing 

background regions. Geodesic distance is an effective metric which 

considers both appearance similarities and spatial distance, so we 

utilize geodesic distance as the weight by splitting up the formu- 

lation of the observation likelihood p ( v | sal ) and p ( v | bg ). We formu- 

late p ( v | sal ) as: 

p(v | sal) = 

∑ 

s i ∈ I 
p geo (s i | sal) p(v | sal ∩ s i ) 

= 

∑ 

s i ∈ sal 

p geo (s i | sal) p(v | sal ∩ s i ) 

= 

∑ 

s i ∈ sal 

p geo (s i | sal) p(v | s i ) , (2) 

where s i denotes superpixel i , I denotes the whole image, sal de- 

notes initial salient regions, p geo ( s i ) denotes the probability of s i , 

namely, the weight of superpixel s i . In our work, the weight is 

represented by normalized geodesic distance ( Section 3.4 ). In the 

same way, p ( v | bg ) is formulated similarly as: 

p(v | bg) = 

∑ 

s i ∈ bg 

p geo (s i | bg) p(v | s i ) , (3) 

where bg denotes initial background regions. 

Fig. 2 shows the overview of our approach. 

3.2. Initial salient regions 

In contrast to [28] which detects coarse initial salient regions 

using convex hull via interest points, we aim to extract more pre- 

cise regions thus making the observation likelihood p ( v | sal ) and 

p ( v | bg ) in (1) more accurate. In this paper, we formulate the ex- 

traction of initial salient regions as a binary segmentation problem. 

Fully connected CRF is an efficient model for image segmentation 

for its strong expressive power in long-range interactions, and with 

a highly efficient inference algorithm proposed in [13] , we propose 

to extracting the initial salient regions using a fully connected CRF 

model. Since in most cases, pixels in the same superpixel share the 

same saliency value, we define the CRF model on the complete set 

of superpixels, this also saves computation time. The Gibbs energy 

Fig. 3. (a) Source images. (b) Coarse initial salient regions in [28] . (c) Initial salient 

regions inferred by our CRF model. (d) Ground truth. 

of our CRF model is defined as: 

E(x ) = 

∑ 

i 

ψ u (x i ) + 

∑ 

i< j 

ψ p (x i , x j ) . (4) 

The unary term ψ u ( x i ) measures the cost of assigning a label 

to superpixel i . In our work, we use the saliency map of exist- 

ing method as the unary potential. The pairwise term ψ p ( x i , x j ) 

encourages similar and nearby superpixels to take similar labels 

which has the form of Potts model [22] : 

ψ p (x i , x j ) = [ x i � = x j ] k (f i , f j ) (5) 

k (f i , f j ) = ω 1 exp 

(
−| p i − p j | 2 

2 θ2 
α

− | v i − v j | 2 
2 θ2 

β

)

+ ω 2 exp 

(
−| p i − p j | 2 

2 θ2 
γ

)
(6) 

where p i denotes the position of the center of superpixel i , v i rep- 

resents the feature vector of superpixel i which is concatenated by 

the mean LAB color and Local Binary Patterns (LBP) [19,20] his- 

tograms. All the parameters ω 1 , ω 2 , θα , θβ , θγ are learnt via cross 

validation. We use the highly efficient approximate inference algo- 

rithm proposed by Krähenbühl and Koltun [13] to infer the initial 

salient regions. Fig. 3 shows the results of the fully connected CRF 

model. We can see that our initial salient regions are very similar 

to ground truth. 
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Fig. 4. (a) Example for selecting samples to train SVM. The green colored regions 

are a pair of positive samples and the blue colored regions are a pair of negative 

samples. Example for constructing two-layer neighborhood graph (yellow colored 

regions). The leg of the horse cuts off the connection between the two grass re- 

gions, with two-layer neighborhood graph, the disconnected grass regions become 

connected. Panel (b) shows an example. The black lines denote connections in gen- 

eral graph. Since node 1 and node 3 have the same neighbor: node 2, they are con- 

nected in two-layer neighborhood graph. Red lines show the additional connections 

of node 1 in two-layer neighborhood graph. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

3.3. Learn a robust measure of region similarity 

Our main idea is attaching more importance to regions which 

are more likely to be parts of a salient object. So we need to 

measure the region similarity, i . e ., the probability of two regions 

belonging to the same object. Measuring the similarity between 

any two regions directly may be inefficient since only appearance 

feature can be considered while spatial relationship is ignored. 

So we propose to measure the similarity of adjacent regions first 

and then the similarity between any regions is defined as their 

geodesic distance. 

Based on our observation and prior works [18] , both appearance 

feature and connections between regions are important for mea- 

suring the probability of two regions belonging to the same object. 

So we use color similarity, texture similarity and common border 

ratio as basic features and combine them to get a robust measure. 

The color similarity ( f c ) and texture similarity ( f t ) are two im- 

portant and complementary metrics for measuring the appearance 

similarity. We define color similarity and texture similarity using 

χ2 distance of LAB color histograms and LBP histograms with 32 

bins for each region, respectively. The common border ratio ( f b ) is 

another important measure which describes the connections be- 

tween regions [18] . The common border ratio is defined as the 

maximum ratio between their common border and each of their 

perimeter: 

f b (i, j) = max 

(
l i | j 
l i 

, 
l i | j 
l j 

)
, (7) 

Table 1 

Feature weights. 

Feature Color similarity Texture 

similarity 

Common 

border ratio 

b 

Weight 8.99 2.25 1.40 −3.28 

where l i and l j represent the perimeters of superpixels i and j , re- 

spectively, l i | j represents the length of their common border. 

We combine the above metrics to get a robust measure of re- 

gion similarity and learn their weights using support vector ma- 

chine (SVM): 

	(i, j) = 

∑ 

s ∈{ c,t,b} 
w s f s (i, j) + b. (8) 

We select couples of adjacent regions within the ground truth 

as positive samples, and the negative samples are selected from 

adjacent regions with one region within the ground truth and an- 

other one within the background. Fig. 4 shows an example. 

The weights we have learnt via SVM are shown in Table 1 . We 

normalize the combined region similarity using a sigmoid func- 

tion: 

Sim (i, j) = 

1 

1 + exp(−	(i, j)) 
. (9) 

3.4. Geodesic weighted observation likelihood 

To measure the similarity between any two regions, we build 

an undirected weighted graph on the whole set of superpixels with 

adjacent superpixels connected. The edge weight between adjacent 

nodes i and j is W e (i, j) = 1 − Sim (i, j) . 

We observed that occlusion often happens between objects and 

background. When occlusion happens, the connected regions of 

one object will be cut off by another object. Fig. 4 shows an exam- 

ple. So we construct a two-layer neighborhood graph, i . e ., a graph 

in which nodes that have the same neighbors are also connected, 

to address this issue. In this way the disconnected regions be- 

come connected, and in addition, regions in the same object with 

long distance will get shorter geodesic distance, which makes the 

geodesic distance more accurate for measuring region similarity. 

The geodesic distance d geo is defined as the accumulated edge 

weights along their shortest path on the graph [33] , 

d geo (i, j) = min 

p 1 = i,p 2 , ... ,p n = j 

n −1 ∑ 

k =1 

W e (p k , p k +1 ) . (10) 

Fig. 5. (a) A comparison between convex hull in [28] and our initial salient regions. (b) Evaluating the effectiveness of our geodesic weight. (c–e) Comparison between GWB 

and the previous version (GWB-pre) in PR curves, F -measure and MAE. We use the saliency map of FT [1] on ASD dataset as prior distribution for example, similar results 

are also observed on other methods but omitted here for brevity. 
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Table 2 

Comparison between one-layer and two-layer neighborhood graph on DUT-ORMON dataset. 

Prior distribution LC HC RC FT SF GS HDCT LPS 

One-layer neighborhood 0.5291 0.5084 0.5622 0.5489 0.5659 0.5703 0.5792 0.5893 

Two-layer neighborhood 0.5340 0.5137 0.5642 0.5534 0.5717 0.5743 0.5824 0.5899 

Fig. 6. Comparison of different methods with their improved versions ( ∗). The first row are tested on ASD [1] , the second are on CSSD [29] , and the third are on DUT-OMRON 

[30] . The first two columns show the improvement of PR curves, the third column shows the improvement of F -measure, and the last column shows the decrease of mean 

absolute error (MAE). 

We define the geodesic similarity as: 

W geo (i, j) = exp 

(
−d 2 geo (i, j) 

2 σ 2 
geo 

)
. (11) 

Empirically, we set σgeo = 0 . 1 in our experiments. 

The geodesic weight in (2) is formulated as normalized mean 

geodesic similarity between the given region and initial salient re- 

gions. 

p geo (s i | sal) = 

mean (W geo (s i , sal)) ∑ 

s j ∈ sal 

mean (W geo (s j , sal)) 
, (12) 

p geo (s i | bg) = 

mean (W geo (s i , sal)) ∑ 

s j ∈ bg 

mean (W geo (s j , sal)) 
. (13) 

Given a pixel x , the feature vector is represented by 

its LAB color feature and LBP texture feature, i . e ., v (x ) = 

(l(x ) , a (x ) , b(x ) , lbp(x )) . The observation likelihood of a given pixel 

x in superpixel s i in (2) and (3) is calculated as: 

p(v | s i ) = 

∏ 

f∈{ l ,a,b,l bp} 

N s i ( f (x )) 

N si 

. (14) 

where N si is the number of pixels within superpixel s i , N si ( f ( x )) is 

the number that superpixel s i contains f ( x ). f ∈ { l , a , b , lbp } denotes 

the component of feature vector v . 

In summary, substituting (12) –(14) into (2) and (3) to compute 

observation likelihood, and then substituting them into (1) , utiliz- 

ing saliency map of existing methods as prior distribution, we ob- 

tain a geodesic weighted Bayesian model which generates a more 

precise saliency map. 
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Fig. 7. Qualitative comparison of numerous methods with their improved versions. The first column shows source images and ground truth. For the second to the last 

column, the odd rows show saliency maps of existing methods, and the even rows show their improved results via our model. 

4. Experiments 

We test our method on three typical benchmark datasets: ASD 

[1] , CSSD [29] and DUT-ORMON [30] . ASD which contains 10 0 0 im- 

ages is widely used and relatively simple, CSSD contains 200 im- 

ages which are moderate difficult, DUT-ORMON contains 5168 im- 

ages which are more challenging. 

For performance evaluation, we utilize precision-recall curves 

(PR curves), F -measure and mean absolute error (MAE). The 

saliency maps are first normalized to [0, 255] and then being bi- 

narized with a threshold sliding from 0 to 255. For each threshold, 

we compare the binary saliency map with ground truth and com- 

pute precision and recall for each image. The PR curves are then 

computed by averaging them on the whole dataset. F -measure is 

an overall performance measure which considers both precision 



X. Wang et al. / Pattern Recognition Letters 75 (2016) 1–8 7 

and recall: 

F β = 

(1 + β2 ) P recison × Recall 

β2 P recison + Recall 
, (15) 

as suggested in many prior works [1,6] ), we set β2 = 0 . 3 . Mean ab- 

solute error ( MAE ) describes the mean difference between contin- 

uous saliency map S (range from 0 to 1) and binary ground truth 

GT . 

MAE = 

1 

W × H 

W ∑ 

x =1 

H ∑ 

y =1 

| S(x, y ) − GT (x, y ) | (16) 

4.1. Evaluation of the effectiveness of our model 

We extensively conduct experiments to verify the effects of sep- 

arate components and their combinations in our approach. 

Initial salient regions: To evaluate our proposed initial salient re- 

gions in Section 3.2 , we apply the convex hull in [28] to our model 

and compare their performances. Fig. 5 (a) shows the comparison of 

precision-recall curves (PR curves). Our method significantly out- 

performs convex hull in [28] , which means our initial salient re- 

gions are more precise and play an important role in our model. 

Two-layer neighborhood graph: We compare our two-layer 

neighborhood graph in Section 3.4 with general one-layer neigh- 

borhood graph. Table 2 shows the results of F -measure on DUT- 

ORMON dataset when using saliency map of different methods as 

prior distribution. We can see that our two-layer neighborhood 

graph achieve a consistent improvement in F -measure with 0.4% 

on average. 

Geodesic weight: To evaluate the effectiveness of our geodesic 

weight, we remove it from our model, i . e ., assigning all weight 

equally, and compare the performance with the complete model. 

Fig. 5 (b) shows the PR curves which demonstrate that geodesic 

weight makes significant contributions to our model. 

Comparison with previous version: We compare our GWB model 

with the previous version GWB-pre and show some results in 

Fig. 5 (c–e). Detailed comparison can be found in the Supplemen- 

tary material. The results demonstrate that our GWB model im- 

prove our previous version by a large margin. In particular, the 

improved results via GWB have little dependency on the quality of 

original methods, namely, even though the original maps are not 

satisfying, the improved maps are also comparable to state-of-the- 

art, while the previous version GWB-pre has much dependency on 

the quality of original methods. 

Speed: We evaluate our method on a 3.5 GHz CPU. The run- 

ning time for GWB is 0.36 s, including 0.03 s for initial salient 

regions segmentation, 0.09 s for superpixel segmentation, 0.05 s 

for measuring region similarity, 0.14 s for computing all distribu- 

tions and inference via Bayesian framework, and 0.05 s for other 

pre-processing, such as colorspace transformation and mean color 

and position of superpixels. Since most methods also include su- 

perpixel segmentation and same pre-processing, when integrating 

into existing methods, the additional running time of GWB can be 

further reduced. Thus our GWB brings little computational over- 

head to existing methods. 

4.2. Integration and comparison with state-of-the-art methods 

We integrate our model into numerous state-of-the-art meth- 

ods, namely, taking their saliency map as prior distribution and in- 

ferring improved maps via our method: LC [32] , FT [1] , HC [6] , RC 

[6] , SF [21] , GS [27] , HDCT [11] , and LPS [14] . 

Fig. 6 shows the results with the original methods and their im- 

proved versions compared. The results demonstrate that our model 

significantly improves their performance in terms of different eval- 

uation metrics. To be specific, our model can improve all meth- 

ods to a similar performance level. For some early methods, the 

improved results are comparable to the state-of-the-arts, and for 

the latest state-of-the-art methods, our model can further improve 

them to higher performance, which shows the strong ability of 

our GWB model in improving the quality of salient object detec- 

tion. A qualitative comparison is also shown in Fig. 7 . The back- 

ground regions are strongly suppressed and the improved maps are 

more uniform, which demonstrates the effectiveness of the pro- 

posed model. 

5. Conclusion 

In this paper, we propose a novel and unified geodesic weighted 

Bayesian model for saliency optimization. Motivated by the prob- 

lems of bottom-up methods and general Bayesian framework, we 

consider spatial relationship in Bayesian framework by reformu- 

lating the computation of observation likelihood, so we can at- 

tach more importance to regions which are more likely to be 

parts of salient object. With that, the background noise is strongly 

suppressed and the salient objects are highlighted uniformly. Our 

model is unified and can integrate into all existing methods to 

improve their performance. Experiments on several benchmark 

datasets demonstrate that our model can significantly improve the 

quality of saliency detection to similar performance level, even 

though the original results are not satisfying, which shows the 

strong ability of our GWB model in improving the quality of salient 

object detection. 
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Supplementary Material: Geodesic Weighted Bayesian Model for Saliency Optimization

Xiang Wang Huimin Ma Xiaozhi Chen

Tsinghua National Laboratory for Information Science and Technology (TNList)
Department of Electronic Engineering, Tsinghua University

In this supplementary material, we present a more detailed comparison between GWB model and the previous conference
version GWB-pre. We utilize saliency maps of several methods as prior distribution, and compare the improved results via
GWB and GWB-pre: LC (Zhai and Shah (2006)), FT (Achanta et al. (2009)), HC (Cheng et al. (2011)), RC (Cheng et al.
(2011)), SF (Perazzi et al. (2012)), GS (Wei et al. (2012)), HDCT (Kim et al. (2014)), and LPS (Li et al. (2015)).
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Fig. 1. Comparison between GWB (**) and the previous version GWB-pre(*). The first row are tested on ASD (Achanta et al.
(2009)), the second are on CSSD (Yan et al. (2013)), and the third are on DUT-OMRON (Yang et al. (2013)). The first two
columns show the comparison of PR curves, the third column shows the comparison of F-measure, and the last column shows
the comparison of mean absolute error (MAE). Best viewed in color.



Fig. 1 shows the comparison of different evaluation metrics. We only show the results of GWB and GWB-pre, the results
of original methods which are shown in the paper are omitted here for clarity. We can see that our proposed GWB model
significantly improved the previous version GWB-pre. In particular, the improved results via GWB have little dependency
on the quality of original methods, namely, even though the original maps are not satisfying, the improved maps are also
comparable to state-of-the-art, while the previous version GWB-pre has much dependency on the quality of original methods.
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