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A B S T R A C T

Object proposals have been widely used in object detection to speed up object searching. However, many of
existing object proposal generators have pool localization quality, which weakens the performance of object
detectors. In this paper, we present an effective approach to improve the localization quality of object proposals.
We leverage the boundary-preserving property of superpixels and design an efficient algorithm for object
proposal refinement. Our approach first performs bounding box alignment to adapt proposals to potential
object boundaries, and then diversifies the proposals via multi-thresholding superpixel merging. The algorithm
only takes 0.15 s and can be applied to any existing proposal methods to improve their localization quality.
Extensive experiments on PASCAL VOC 2007 and ILSVRC 2013 datasets show our approach significantly and
consistently improves the recall, localization accuracy, and detection performance of existing proposal methods.
When combining with Region Proposal Network, our approach outperforms the state-of-the-art object detectors
by a large margin.

1. Introduction

Object proposal generation has become a crucial technique for
many vision recognition tasks, such as class-specific object detection
and instance segmentation. The goad of object proposal generation is
to select a small set of object candidates that cover most of the objects
in an image. The advantages of object proposals over traditional sliding
windows [1] lie in two aspects: reducing computations with fewer
regions of interest, and improving accuracy by using more sophisti-
cated features and classifiers. Recent object detectors [2–4] utilizing
object proposals have achieved state-of-the-art performance on chal-
lenging PASCAL [5], ImageNet [6] and MS COCO [7] datasets.

Two distinct pipelines emerge for object proposal generation:
bottom-up approaches based on low-level cues, and data-driven
approaches based on Convolutional Neural Networks (CNN). Most
bottom-up approaches generate proposals by window scoring or region
grouping. Existing models belonging to this pipeline struggle to achieve
a good balance between localization accuracy and computational
efficiency. In particular, window scoring based methods, such as
BING [8], are computationally efficient, but they suffer from pool
localization quality, i.e., low recall under strict intersection over union
(IoU) overlap criteria (e.g., IoU > 0.7). Region grouping based methods
such as Selective Search [9] and MCG [10] are computationally
expensive, while they usually achieve higher localization quality.
Data-driven approaches [4,11] leverage rich convolutional neural net-
work features to directly predict the regions of interest. Due to the

powerful discrimination ability of CNN features, these models typically
achieve higher recall than bottom-up proposals under loose overlap
criteria (e.g., IoU < 0.7). However, similar to window scoring based
methods, they usually have much lower recall at high overlap thresh-
old.

Motivation. Most window scoring based and CNN-based methods
fail to achieve high recall under strict overlap criteria. While region
grouping based methods have better localization accuracy, they are
usually computationally expensive. The goal of this paper is to improve
localization accuracy of existing object proposals while preserving
computational efficiency. Our work is inspired by the observation that
superpixels have the good property of preserving object boundaries,
which could benefit object localization. Prior superpixel-based methods
typically exploit low-level features like color, texture, to compute region
similarity for image partition, which is usually time-consuming. In
contrast to those methods, we develop a very efficient algorithm by only
using superpixel straddling to guide the superpixel merging process.
Furthermore, instead of exploiting multiple segmentations to diversify
proposals, we propose multi-thresholding superpixel merging for
efficient diversification.

Overview. Our main idea is to utilize superpixel boundaries to
refine candidate bounding boxes. Our approach consists of three
stages: 1) Initialize a set of candidate bounding boxes using any
existing proposal method. Note that our approach is agnostic to the
proposal method. 2) Perform bounding box alignment to adapt
proposals to boundaries of superpixels. 3) Diversify the proposals
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using multi-thresholding superpixel merging. The overall process is
illustrated in Fig. 1. The superpixel merging process only uses super-
pixel straddling feature, which can be computed very efficiently, thus
our approach preserves computational efficiency when integrated into
existing models. We also introduce superpixel tightness (ST) as an
indicator to measure the localization accuracy of object proposals
without access to ground truth boxes. The statistical behavior of the
object proposals on PASCAL VOC 2007 dataset verifies the effective-
ness of our approach.

Contributions. The main contributions of our work are as follows:

• A boundary-aware method is proposed to improve localization
accuracy of object proposals. An efficient algorithm which takes
only 0.15 s per image is presented for bounding box alignment and
superpixel merging.

• An analysis of proposal localization is provided by introducing a
superpixel tightness measure, which demonstrates the statistical
behavior of our approach.

• Extensive experiments are conducted on PASCAL VOC 2007 and
ImageNet ILSVRC 2013 datasets, which show that our approach

significantly boosts the recall and localization quality of existing
proposal methods. We further apply the improved object proposals
to Fast R-CNN for object detection. In particular, our approach
outperforms the state-of-the-art Faster R-CNN [4] on VOC
2007 dataset, achieving 72.2% detection mAP.

A preliminary version of this work was presented in [12].
Extensions are made in four aspects: 1) An extensive review of object
proposal methods, including both bottom-up proposals and CNN-
based proposals. 2) We further apply the approach to CNN-based
proposals, in particular, the Region Proposal Network (RPN). 3)
Extensive experiments on ImageNet ILSVRC 2013 datasets, which
show the generalization ability of our approach. 4) The approach is
extended by combining with Fast R-CNN for object detection. We show
our approach outperforms the state-of-the-art Faster R-CNN [4] by
2.9% mAP on VOC 2007 dataset.

2. Related works

We first review two kinds of object proposal generation approaches,

Fig. 1. Illustration of our method using several examples. (a) Input images. (b) Initial bounding boxes. (c) Boxes after alignment. (d-e) Proposals after straddling expansion by setting
the threshold δ to 0.7 and 0.3, respectively. Superpixels wholly enclosed by a bounding box are indicated in yellow, (a) Input (b) Initial boxes (c) Box Alignment (d) δ = 0.7 (e) δ = 0.3.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

X. Chen et al. Neurocomputing 219 (2017) 323–332

324



namely bottom-up proposals and data-driven proposals. Then we
briefly review related applications of object proposals.

Bottom-up proposals. This paradigm generates object proposals by
exploiting low-level cues. In general, these methods can be divided into
window scoring based and region grouping based methods. We refer
the reader to [13,14] for an in-depth survey.

Window scoring based methods typically design a scoring function
to rank a large set of candidate bounding boxes. The scoring functions
are supposed to be able to distinguish objects from amorphous back-
ground stuff. To this end, various low-level cues are exploited in the
scoring functions, such as color contrast, saliency [15], superpixels,
location and size [16], binarized normed gradients [8], and edge maps
[17]. While these approaches are computationally efficient, they can
hardly achieve high recall under strict overlap criteria (e.g., IoU > 0.7).
Their pool localization quality are mainly due to the fact that they
usually use regular sampling to sample bounding boxes which can
hardly locate object precisely. For instance, BING [8] has very high
recall at IoU threshold of 0.5 and is also extremely fast in speed.
However, its recall drops dramatically with the IoU threshold increas-
ing due to its coarse quantization scheme [18,19]. To lessen loss caused
by regular sampling, EdgeBoxes [17] refines top scoring bounding
boxes via greedy iterative local search. But it gives no guarantee of
alignment to object boundaries since the refinement is performed with
a fixed searching step. Our approach aligns bounding boxes with
potential object boundaries preserved by superpixels, thus obtains
better localization. In fact, we will show that our approach can further
improve EdgeBoxes.

Region grouping based methods perform superpixel merging or
multiple segmentations to generate segment proposals. These ap-
proaches usually measure region similarity using diverse and comple-
mentary cues such as color, texture and location. Selective Search (SS)
[9] performs superpixel segmentations using multiple scales and color
spaces, and designs a hierarchical grouping algorithm to obtain region
proposals. MCG [10] generates proposals by exploring combinatorial
space in hierarchical segmentations and grouping multi-scale regions.
Randomized Prim (RP) [20] produces candidate regions by computing
random partial spanning trees in a superpixel connectivity graph. GOP
[21] places promising object seeds and identifies candidate regions by
employing signed geodesic distance transform. GLS [22] produces
candidate regions by performing superpixels merging locally and graph
cut globally. Furthermore, some other models [23–26] address it as
multiple figure-ground segmentations and minimize a set of parametric
energies. To improve proposal quality, most of these methods increase
candidate diversity by employing segmentations in multiple scales and
color spaces, which, however, requires much more computations
(typically seconds). While our approach also leverages superpixels,
we propose a very fast superpixel merging algorithm which does not
require multiple segmentations to obtain diversity, thus saving com-
putational cost.

Data-driven proposals. With the advances of deep neural networks
on visual recognition [3,27–30], recent efforts on object proposals
exploit data-driven approaches using powerful convolutional network
features. MultiBox [11,31] learns to directly predict the coordinates of
a fixed number of proposals and the corresponding confidences. Region
Proposal Network (RPN) [4] regresses the coordinates of bounding box
proposals relative to a set of pre-defined translation-invariant anchors.
DeepBox [32] uses a small convolutional network to rerank bounding
box proposals generated by EdgeBoxes [17]. DeepProposals [33] scores
a large set of candidate bounding boxes using the last convolutional
layers and refines their locations using the initial layers. DeepMask
[34] designs a two-branch network to predict multiple figure-ground
masks and confidences for dense image patches. Compared with
bottom-up proposals, CNN-based proposals typically require fewer
proposals (less than 1000) to achieve very high recall using at low
overlap threshold (e.g., IoU < 0.6). However, the pool localization
problem is also observed in CNN-based proposals. While CNN models

have strong semantic extraction ability, they usually bear the loss of
spatial information due to downsampling. As a result, most CNN-based
proposals have relative lower recall under strict overlap criteria (e.g.,
IoU > 0.7). We show that when utilizing superpixels, our approach can
effectively improve the localization quality of the state-of-the-art RPN
[4] proposals, leading to significantly better detections on PASCAL
VOC 2007.

Our approach is essentially a box refinement method that can be
applied to any existing object proposals to improve their localization
accuracy. With the boundary-preserving property of superpixels, our
approach typically provides complementary cues to window scoring
based and CNN-based proposals. Due to the diversification effect of our
approach, it can further improve the recall of region grouping
proposals.

Object proposals have been widely applied to vision recognition
tasks, such as object detection [2–4], instance segmentation [35,36],
and object tracking [37–40]. The state-of-the-art R-CNN [2,3] object
detectors heavily rely on the quality of object proposals. Hosang et al.
[13] investigates the effect of various object proposal methods on
detection results and suggests that high recall and accurate localization
are critical to achieving high-performance object detection. Hariharan
et al. [35] combines object proposals with CNN to perform object
detection and segmentation simultaneously. Yang et al. [37] formulates
the object tracking problem as proposals selection and shows superior
performance over previous works. In addition, it's interesting to see
how object proposals are applied to 3D point cloud [41] and medical
images [42,43]. While our object proposals can be applied to many
vision recognition tasks, in this paper we focus on its application on
object detection.

3. Proposed approach

We first present our box alignment method in Section 3.1 and the
multi-thresholding superpixel merging algorithm in Section 3.2. Then
we introduce a measure in Section 3.3 which demonstrate the
statistical behavior of our method.

3.1. Box alignment

Given a pool of candidate bounding boxes generated from certain
proposal method, we first use superpixels to align them with object
boundaries. This step is typically beneficial to proposals which are
generated without exploitation of the superpixel cues. For instance,
BING proposal [8] selects a subset of box candidates from sliding
windows, which are sampled uniformly with fixed sizes and aspect
ratios, thus they possibly align badly with object boundaries.

Since the exact object boundaries are not accessible, we use
superpixels as surrogate and align bounding boxes with the boundaries
of superpixels. Given an image, we obtain a set of superpixels θ via an
over-segmentation with parameters θ. If a bounding box b is the
minimum box enclosing a subset of the superpixels θ , then we say it
aligns with superpixels θ .

Given an initial bounding box b, the goad of box alignment is to
output a new box so that it not only aligns with superpixel boundaries,
but also has the highest overlap with the initial box. To this end, we
first compute the inner set in and straddling set st of box b, which are
defined as

s SD s b s SD s b= { ∈ | ( , ) = 1}, = { ∈ |0 < ( , ) < 1},in θ st θ (1)

where SD s b s b s( , ) = | ∩ |/| | is the straddling degree of superpixel s with
regard to box b. Intuitively, in represents the superpixels wholly
enclosed by box b, and st represents the superpixels containing pixels
both inside and outside b.

Let b ( ) denote the minimum box enclosing superpixels , and
O b b( , )i j the IoU overlap between bi and bj. We then sort the elements
in the straddling set st according to the IoU overlaps, so that its
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elements s s{ , … }K1 satisfy

O b s b O b s b i j( ( ∪ { }), ) ≥ ( ( ∪ { }), ), ∀ < .in i in j (2)

Let b S( )in denote the minimum box enclosing the inner set. The box
alignment process is to merge superpixels greedily from the sorted
straddling set, in order to expand the bounding box from b S( )in to the
one which is closest to the given box b. By this means, we obtain a new
bounding box b⋆ which aligns with superpixel boundaries and also has
the highest overlap with the initial box b. We summarize the specific
procedure in Algorithm 1.

Algorithm 1. Box Alignment

Input: initial box b, superpixels θ

Output: aligned box b⋆

1: compute inner set: ← in

2: obtain sorted straddling set: s s{ , … }K1

3: k ← 1
4: o O b b← ( ( ), )
5: o O b s b← ( ( ∪ { }), )k

6: while o o≥ do
7: o o←
8: s← ∪ { }k

9: k k← + 1
10: o O b s b← ( ( ∪ { }), )k

11: end while
12: b b← ( )⋆

We illustrate some examples in the third column of Fig. 1.
Intuitively, box alignment is capable of “dragging” the coarse bounding
boxes back to the main part of an object, as shown in Row 1–3 in Fig. 1.
In some cases (e.g., Row 3 in Fig. 1), the box alignment procedure is
already sufficient to re-localize the object precisely.

3.2. Multi-thresholding superpixel merging

As box alignment only refines proposals to align it with superpixels
boundaries, it can not improve the localization quality of some initial
proposals which have small overlap with objects. Therefore, we propose
the multi-thresholding superpixel merging algorithm as the second
stage to further diversify proposals. Given an aligned bounding box b⋆,
we perform superpixel merging based on its straddling with super-
pixels. Formally, given a threshold δ, we define straddling expansion
as the following refinement:

b b s SD s b δ( ) = ( ) ∪ { ∈ | ( , ) ≥ }.δ in θ
⋆ ⋆ ⋆ (3)

By computing the minimum box enclosing b( )δ
⋆ we obtain a new box

b . Some examples of straddling expansion with different δ values are
visualized in Fig. 1. Intuitively, large value of δ produces a minor
variant of b, which is desired for proposals that already have moderate
overlap with an object. On the other hand, a distinct box can be
obtained with small value of δ, which can increase the possibility of
jumping out of a “local minima” for inaccurate box.

As a fixed threshold is not always optimal for all bounding boxes,
we use multiple δ's to perform straddling expansion. By this means,
multiple bounding boxes are generated for each initial bounding box.
In practice, we perform straddling expansion five times by setting the
threshold δ to i i0.1 × , = 1, 2,…,5, which are determined via cross-
validation. As a consequence, this generates five sets of bounding
boxes. To reduce redundancy, we sort each set by adding some
randomness. Specifically, let bi be the bounding box refined from the
initial box bi using certain value of δ. We score bi with value i R× ,
where R is a random number in range [0,1]. We obtain a ranked list of
candidate boxes by sorting all the boxes in ascending order. Non-
maximal suppression (NMS) is performed after ranking to obtain a

final set of proposals.
The unique benefit of our box refinement method is that it can

naturally generate bounding boxes aligning with object boundaries
preserved by superpixels. This property differentiate our method from
EdgeBoxes [17] which performs fixed-step local search. Moreover,
unlike existing superpixel merging methods (e.g., SS [44]), straddling
expansion doesn't require extracting low-level features such as color
and texture to measure regions similarity. Only straddling degrees are
computed for superpixels, thus the algorithm is very efficient.

3.3. Analysis of localization

The advantage of region grouping proposals over window scoring
proposals mainly lies in its higher localization quality. Owing to the
leverage of superpixels, our approach is also able to obtain high
localization accuracy. To understand the effect of our method, we
introduce an indicator, superpixel tightness (ST), which measures how
tight a bounding box encloses an object. Formally, the ST of a bounding
box b is defined as the proportion of the area of superpixels wholly
enclosed by box b to the area of b:

∑ST b s δ s s b
b

( ) = | |· (| | − | ∩ |)
| |

,
s∈ θ (4)

where δ x( ) is the Dirac delta function which takes value of 1 if x=0 and
0 otherwise. For superpixels s wholly enclosed by b, we sum up the
number of pixels contained in the superpixels and divide by the area of
b. ST(b) is 0 when none of the superpixels is wholly enclosed by b. The
ST measure is similar to the superpixels straddling cue introduced in
[16]. Our ST measure differs from it by disregarding superpixels
straddling the box.

The superpixel tightness measure can serve as an indicator of the
object proposal localization quality. To show this, we compute the ST
statistics on PASCAL VOC 2007 dataset. We first plot the distributions
of superpixel tightness for ground truth bounding boxes and back-
ground regions respectively in Fig. 2(a). We sample background
regions randomly from sliding windows and the overlap of the regions
with ground truth boxes should be less than 0.5. It can be seen from
Fig. 2(a) that objects have diverse degrees of superpixel tightness while
the majority of background regions incline to low value of ST.

Based on this observation, a high-quality object proposal generator
should produce box candidates with superpixel tightness distribution
similar to that of ground truth objects. However, most window scoring
methods fail to make it. For demonstration, we plot the ST distribu-
tions for proposals generated by several methods in Fig. 2(b). In
particular, we test BING [8], OBJ [16], EB [17], RP [20], GOP [21], SS
[9] and MCG [10]. Fig. 2(b) clearly shows that all window scoring
proposals (i.e., OBJ, BING, and EB) have strong bias to low tightness
while the region grouping based proposals have distributions more
similar to the ground truth distribution. This accords with their
difference in localization quality. Therefore, we can use ST distribution
as an indicator of the localization quality.

Similar to region grouping methods, our superpixel merging
method is able to generate object proposals with ST distribution close
to the ground truth. We plot the ST distributions after applying our
approach to the bounding box proposals generated by BING [8], OBJ
[16], SS [44] and MCG [10] in Fig. 3. We can observe a shift of ST
distribution from low ST to high ST after applying our box refinement
to BING and OBJ. Note that even for SS and MCG, which are region
grouping methods, we also obtain ST distributions closer to the ground
truth distribution.

4. Experiments

Implementation. We compute superpixel segmentation using [45]
in Lab color space at a single scale. Specifically, the segmentation
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parameters θ σ k min= ( , , ) are set to σ k min= 0.8, = 100, =100. For
non-maximal suppression, we set the IoU threshold to 0.8 for window
scoring proposals, and 0.9 for region grouping and CNN-based
proposals, respectively. We found this setting can generate a moderate
budget of object proposals with high accuracy.

Datasets. We evaluate our method on PASCAL VOC 2007 [46] and
ImageNet ILSVRC 2013 [47] datasets. The VOC 2007 test set contains
4952 images and 14,976 object instances from 20 categories. Note that
we follow Hosang et al. [13,14] to evaluate all objects including those
annotated to be “difficult”, which are removed in some other settings
[8,17]. The ImageNet 2013 validation set has 200 categories with
bounding box annotations in ∼20,000 images.

Metrics. We evaluate recall and localization accuracy of object
proposals, as well as the final detection performance by training Fast R-
CNN [3] with proposals. Recall is computed as the fraction of ground
truth bounding boxes covered by proposals above certain IoU overlap
threshold. We use α-recall to denote recall at IoU overlap threshold of
α. We use the recall vs proposal curve to depict recall for different
number of proposals and recall vs overlap curve to illustrate the
variation of recall under different IoU overlap criteria. We also evaluate

Average Recall (AR) [13], which is computed as the area under “recall
vs overlap” curve in overlap range 0.5–1.0. To evaluate localization
accuracy, we also compute the Average Best Overlap (ABO) [44] for
object proposals. Best overlap for each ground truth object is computed
as its highest IoU overlap with object proposals.

To evaluate the impact of the proposals's localization quality on the
object detection performance, we finally conduct detection experiments
on PASCAL VOC 2007 by combining the state-of-the-art Fast R-CNN
[3] model with object proposals.

4.1. Model analysis

We start by verifying the effectiveness of the two components of our
method, namely box alignment and multi-thresholding superpixel
merging. For this experiment, we use BING [8] for bounding box
initialization. We compare two variants: BING with box alignment, and
BING with both box alignment and superpixel merging. Recall curves
are shown in Fig. 4. In particular, box alignment improves BING by
4.6% in average recall (AR) with 1000 proposals. After adding super-
pixel merging, we obtain another ∼15% improvement. Note that our

Fig. 2. Distributions of superpixel tightness for (a) ground truth objects and background regions on PASCAL VOC 2007 test set, and (b) 1 K object proposals generated by several
window scoring based models (in dashed lines) and region grouping based models (in solid lines). The values at ST=0, which imply the proportion of bounding boxes that contain no
superpixels entirely, are ignored in the figures for clarity. Best viewed in color.

Fig. 3. Distributions of superpixel tightness before (in dashed lines) and after (in solid lines) applying straddling expansion for four baseline models: (a) BING [8] and OBJ [16], (b) SS
[9] and MCG [10]. Best viewed in color.
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Fig. 4. Recall for BING and its improved versions using our approach. ‘BING+BA’: BING with box alignment; ‘BING+BA+SM’: BING with box alignment and superpixel merging. For
the recall vs overlap curves, numbers next to labels indicate average recall (AR). Best viewed in color.

Fig. 5. Recall on PASCAL VOC 2007 test set for numerous models (in dashed lines) and their improved versions (in solid lines) using our method. From left to right: recall using 1000
proposals, recall at IoU of 0.8, average recall vs number of proposals. Best viewed in color.
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full approach significantly boosts the recall at IoU of 0.7 from ∼25% to
∼65%, which implies the effectiveness of our method in improving
localization accuracy.

Speed. We evaluate the runtime of our method on a 3.5 GHz CPU.
The total time for our approach is 0.15 s using single thread, including
0.04 s for colorspace conversion, 0.1 s for superpixel segmentation, and
0.01 s for box alignment and superpixel merging. Therefore our
method brings little computational overhead to existing models.

4.2. Recall evaluation

We integrate our method into numerous existing models. We
evaluate proposal recall using recall vs overlap curve for 1000
proposals, recall vs proposal curve at IoU of 0.8, and AR vs proposal
curve. Results are presented in Fig. 5 for PASCAL VOC 2007 and Fig. 6
for ImageNet 2013 datasets.

Baselines. As our approach can be applied to any object proposal
methods, we conduct experiments by integrating it into numerous
baseline models. In particular, we test on OBJ [16], BING [8], EB [17],

RP [20], GOP [21], LPO [26], SS [9], MCG [10] and RPN [4].
Correspondingly, the improved versions are named M-OBJ, M-BING,
M-EB, M-RP, M-GOP, M-LPO, M-SS, M-MCG and M-RPN, respec-
tively. Note that the baselines cover a wide range of existing object
proposal methods, including bottom-up proposals and CNN-based
proposals.

PASCAL VOC 2007. Proposal recall plots and statistics are reported
in Fig. 5 and Table 1. From Fig. 5 (Row 1) we observe that our
approach significantly improves window scoring based models to a
similar performance level with high recall consistently. In particular,
for BING [8] and OBJ [16], which are typically tuned for low overlap,
our method improves their recall at high overlap (i.e., IoU=0.8)
significantly while preserving high recall at low overlap. For EB [17]
which is tuned for IoU of 0.7, our method also obtains higher recall
across a wider range of IoU threshold without losing edge at IoU of 0.7.

Despite most region grouping proposals already have quite good
localization, our approach can further improves their performances
(see Row 2–3 in Fig. 5). In particular, we achieve 6∼13% improvement
of recall at IoU of 0.8, which is very strict overlap criteria, in a wide

Fig. 6. Recall on ILSVRC 2013 validation set for numerous models (in dashed lines) and their improved versions (in solid lines) using our method. From left to right: recall using 1000
proposals, recall at IoU of 0.8, average recall vs number of proposals. Best viewed in color.

Table 1
Proposal results on PASCAL VOC 2007 test set. We report Average Recall (AR), Average Best Overlap (ABO) and recal at IoU of 0.8 for three budgets of proposals: 500, 1000, 2000.
Numbers are shown for methods before/after applying our approach.

Method # prop=500 # prop=1000 # prop=2000

AR ABO 80%-recall AR ABO 80%-recall AR ABO 80%-recall

BING [8] 25.4/41.5 58.9/ 67.0 7.6/ 33.0 27.3/ 46.7 61.7/71.2 7.9/ 38.7 28.4/51.1 63.1/ 74.3 7.9/ 43.6
OBJ [48] 29.6/42.5 59.6/ 65.9 10.1/37.9 30.9/ 46.9 61.8/69.6 10.2/ 42.9 31.6/50.4 63.3/ 72.6 10.3/47.0
EB [17] 45.5/45.7 67.7/ 69.5 40.7/41.6 50.2/ 51.5 72.2/73.7 44.5/ 49.3 53.8/56.4 75.4/ 76.9 47.1/55.9
RP [20] 39.6/44.8 64.8/ 68.3 33.6/41.0 46.3/ 51.4 70.0/73.3 41.0/ 49.1 52.6/57.4 74.5/ 77.4 48.6/57.1
GOP [21] 28.8/38.9 55.4/ 62.4 20.2/33.6 49.7/ 53.4 72.3/74.3 44.7/ 51.8 54.3/58.1 75.1/ 77.3 51.2/58.7
LPO [26] 45.2/47.9 70.1/ 71.2 38.6/44.0 47.1/ 53.4 71.5/75.1 40.8/ 50.7 56.1/59.4 76.7/ 78.6 53.2/59.7
SS [44] 45.0/46.2 68.0/ 69.2 40.3/42.4 51.9/ 52.9 73.1/74.0 48.5/ 51.2 58.4/58.8 77.5/ 77.9 57.1/59.4
MCG [10] 50.7/51.9 73.1/ 73.6 47.1/49.5 56.4/ 57.7 76.9/77.7 54.0/ 56.8 61.2/62.5 79.8/ 80.6 60.2/63.7
RPN [4] 46.7/53.7 71.1/ 74.6 32.6/51.4 48.6/ 57.7 72.8/77.3 34.4/ 57.6 49.8/60.4 73.8/ 79.0 35.5/62.1
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range of proposal budgets for RP [20], GOP [21] and LPO [26]. For SS
[9] and MCG [10], which are state-of-the-art bottom-up proposals as
reported in [13], we also their recall at IoU of 0.8 by 3%.

We also apply our method to Region Proposal Network (RPN) [4],
which is proposed in Faster R-CNN and achieves state-of-the-art

detection performance. As shown in Fig. 5, our method significantly
boosts the recall of RPN under strict overlap criteria (e.g., IoU > 0.7).
Note that when using 1000 proposals, recall at IoU of 0.8 is
improved from 34.4% to 57.6% and AR is improved from
48.6% to 57.5%. This demonstrates the effectiveness of combining

Fig. 7. Qualitative results of BING (blue) and its improved version M-BING (red) with 1000 proposals on PASCAL VOC 2007 test set. Ground truth objects are indicated in green. All
presented proposals are the ones closest to each ground truth object. Note the improved localization after using our method. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 2
Proposal results on ILSVRC 2013 validation set. We report Average Recall (AR), Average Best Overlap (ABO) and recal at IoU of 0.8 for three budgets of proposals: 500, 1000, 2000.
Numbers are shown for methods before/after applying our approach.

Method #prop=500 #prop=1000 #prop=2000

AR ABO 80%-recall AR ABO 80%-recall AR ABO 80%-recall

BING [8] 24.6/ 40.4 58.2/ 66.0 6.5/ 31.4 26.4/ 45.4 60.7/ 69.9 6.8/ 36.6 27.5/ 49.6 62.3/ 73.1 6.9/ 41.4
EB [17] 46.2/ 46.7 67.7/ 69.5 42.0/ 43.5 50.3/ 51.9 71.8/ 73.4 45.5/ 50.7 53.4/ 56.2 74.7/ 76.3 48.0/56.8
RP [20] 40.9/ 45.8 65.3/ 68.4 35.4/ 42.8 47.3/ 52.0 70.3/ 73.2 43.0/ 50.8 53.2/ 57.3 74.5/ 76.9 50.4/57.9
GOP [21] 29.5/ 39.9 55.3/ 62.5 21.3/ 35.3 49.8/ 53.7 71.8/ 73.8 45.5/ 52.7 54.2/ 58.1 74.6/ 76.7 51.7/59.4
SS [44] 47.3/ 47.8 69.0/ 69.6 44.0/ 45.2 53.7/ 53.8 73.7/ 74.0 51.8/ 53.4 59.4/59.1 77.6/77.6 59.3/60.7
MCG [10] 50.5/ 51.4 72.6/ 72.7 47.7/ 49.4 55.9/ 56.7 76.3/ 76.6 54.5/ 56.4 59.6/ 61.0 78.6/ 79.5 59.2/62.4
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powerful CNN features and low-level superpixel cues.
For illustration, some qualitative examples for BING and its

improved version M-BING are shown in Fig. 7.
ImageNet 2013. We extensively conduct experiments on ImageNet

ILSVRC 2013 validation set. As the dataset is much larger, we only
apply our method to baselines that have pre-computed proposals
available online [13]. Results are presented in Fig. 6 and Table 2.
Similar to VOC 2007, we observe significant improvement in recall and
ABO for all methods. In particular, when using 1000 proposals, the
maximum gains are obtained when applying our method to BING [8],
achieving 19%, 9.2%, and 29.8% improvement in AR, ABO and 80%-
recall, respectively. For EB [17], RP [20], and GOP [21], which are
quite efficient in computation but have moderate localization quality,
our method improve their AR from 47%∼50% to 52%∼54%, achieving
similar performance with SS [44]. The consistent improvement on
ImageNet 2013 dataset implies the generalization ability of our
method.

4.3. Object detection performance

We also evaluate object detection performance on PASCAL VOC
2007 by combining object proposals with Fast R-CNN [3]. We use
VGG-16 [49] network and 1000 proposals per image for the experi-
ments. Comparisons of average precision (AP) for numerous baselines
and our improved versions are reported in Table 3. Our method
achieves consistent improvements in terms of mean AP for all proposal
methods. In particular, we obtain about 2% mAP improvement for
most methods.

When applying to BING [8], our approach significantly improves
the mAP from 61.1% to 67.8%. Note that the state-of-the-art SS [44]
method also has mAP of 67.8%. However, a combination of BING and
our box refinement method is much more efficient than SS, as it only
takes about 0.15 s while SS requires 2 s. In fact, BING++ [18] shows
that when utilizing GPU implementation, the approach can be achieved
to be real-time.

For RPN [4], we compare our results with two variants. One is the
original Faster R-CNN, where RPN is trained end to end together with
Fast R-CNN. Following [4], this version is trained with 2000 proposals
and tested with 300 proposals. Another is the unsharing feature
version, i.e., the object detector is fine-tuned with 1000 fixed RPN
proposals generated by the first variant. Note that the second variant is
different from the unsharing feature version implemented in [4], as in
our implementation RPN is first trained end to end in Faster R-CNN
and the object detector is trained once more by fixing RPN proposals.
As shown in Table 3, RPN integrated with our method outperforms the

end-to-end Faster R-CNN model and the unsharing feature version by
about 3% and 2%, respectively, achieving 72.2% mAP. This gain solely
comes from the improved localization quality of proposals, which
suggests that the localization quality of proposals affects the detection
performance significantly and our method is effective in improving
object detection with complementary superpixel cues.

5. Conclusions

We have proposed an effective approach to improve the localization
quality of object proposals. Our approach leverages the property of
superpixels to perform boundary-aware proposal refinement. We de-
sign a box alignment algorithm to align proposals with superpixel
boundaries, and a fast superpixel merging method to diversify propo-
sals. Our method is very efficient and agnostic to any proposal
methods.

Experiments on PASCAL VOC 2007 and ILSVRC 2013 datasets
show the effectiveness of the proposed method. It significantly boosts
the recall and localization accuracy of most existing proposal methods.
We also conduct object detection experiments by combining the
improved proposals with Fast R-CNN. Our approach integrated with
RPN obtains the highest detection mAP on VOC 2007 test set. The
experiments demonstrate the effectiveness of combining powerful CNN
features and low-level superpixel cues in improving object proposal
localization quality and object detection. In future, we will integrate
superpixel cues into an end-to-end network to further boost the object
detection performance.
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