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a b s t r a c t 

Weakly-supervised semantic segmentation (WSSS) using only tags can significantly ease the label costing, 

because full supervision needs pixel-level labeling. It is, however, a very challenging task because it is not 

straightforward to associate tags to visual appearance. Existing researches can only do tag-based WSSS on 

simple images, where only two or three tags exist in each image, and different images usually have dif- 

ferent tags, such as the PASCAL VOC dataset. Therefore, it is easy to relate the tags to visual appearance 

and supervise the segmentation. However, real-world scenes are much more complex. Especially, the au- 

tonomous driving scenes usually contain nearly 20 tags in each image and those tags can repetitively 

appear from image to image, which means the existing simple image strategy does not work. In this pa- 

per, we propose to solve the problem by using region based deep clustering. The key idea is that, since 

each tagged object is repetitively appearing from image to image, it allows us to find the common ap- 

pearance through region clustering, and particular deep neural network based clustering. Later, we relate 

the clustered region appearance to tags and utilize the tags to supervise the segmentation. Furthermore, 

regions found by clustering with weak supervision can be very noisy. We further propose a mechanic 

to improve and refine the supervision in an iterative manner. To our best knowledge, it is the first time 

that image tags weakly-supervised semantic segmentation can be applied in complex autonomous driv- 

ing datasets with still images. Experimental results on the Cityscapes and CamVid datasets demonstrate 

the effectiveness of our method. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Semantic segmentation aims to assign a semantic label to each

pixel in images, it gives a full understanding of the scenes in

images, thus can benefit a lot of applications, for example, au-

tonomous driving [1–3] . However, semantic segmentation relies on

a huge number of pixel-wise annotations, which is very costly and

limits its application. Tags-based weakly-supervised semantic seg-

mentation is a solution which can significantly reduce the labeling

cost from pixel-level to a few tags per image. 

In existing researches, tags-based methods have been explored

on simple images, where only a few (usually two or three) tags ex-

ist in each image, and different images usually have different tags,

such as the PASCAL VOC dataset. Therefore, it is relatively easy to
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elate tags to visual appearance and supervise the segmentation

etwork. 

However, real-world scenes are much more complex, especially

he autonomous driving scenes, they usually contain nearly 20 tags

n each image and those tags can repetitively appear from image

o image, which means the existing simple image strategies [4–10]

o not work. As shown in Fig. 2 (a), in the PASCAL VOC dataset,

nly a few salient objects are presented, and a large part of re-

ions are annotated as background. However, as in Fig. 2 (b,c), in

utonomous driving scenes, many objects are presented in one

ingle image, some of them are even diverse and small. Facing

he aforementioned difficulties, existing methods are not perform-

ng well in complex autonomous driving scenes. For example, the

CNN method [11] achieves mIoU at 35.6% on the PASCAL VOC

ataset, but only obtains 7.2% on the Cityscapes dataset. To the

est of our knowledge, image tags weakly-supervised semantic

egmentation in complex still images, e.g. , the Cityscapes [1] and

amVid [12] datasets, has not be exploited. 

In this paper, we aim to solve the tags-based semantic segmen-

ation in autonomous driving scenes. The key idea is that, since

https://doi.org/10.1016/j.neucom.2019.11.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.11.019&domain=pdf
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Fig. 1. (a) Pipeline of the proposed method. First, we apply the localization network trained from ImageNet dataset to get initial object localization. Second, with the initial 

object localization, we iteratively learn features of objects and cluster image regions to expand object regions. These regions are then used to supervise the segmentation 

network. (b) Some intermediate visual results. Starting from the very coarse initial localization, our method can produce quite satisfactory results. 

Fig. 2. Examples from the PASCAL VOC, Cityscapes and CamVid datasets. The top right is the corresponding thumbnail of annotation. In the PASCAL VOC dataset, the scene 

is simple with only a few objects presented in each image. While in the Cityscapes and the CamVid datasets, almost all object classes are presented in every single image 

simultaneously. Thus the class labels contain hardly any information for supervising networks. 
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ach tagged object is repetitively appearing from image to image,

t allows us to find the common appearance through region clus-

ering, and particular deep neural network based clustering. Specif-

cally, first, we take advantages of simple images, e.g., ImageNet

ataset [13] , and train a discriminative classifier to associate im-

ge tags with distinctive visual features. Then we apply the trained

etwork to autonomous driving datasets and produce class activa-

ion map [14] as the initial localization. This localization provides

s with discriminative regions of each object, as shown in the sec-

nd column in Fig. 1 (b). 

Second, while complex autonomous driving scenes is more

hallenging, however, one import characteristic is that, in au-

onomous driving scenes, objects within the same class have more

imilarities, i.e., shared attributions, as all images in autonomous

riving scenes have a very similar appearance. For example, in
ig. 3 , cars appear in many images and their appearance does not

ary much. In addition, objects are clustered, i.e., many objects ap-

ear in every single image, so they provide us with more training

nstances to learn the shared attributions of objects. 

Motivated by this characteristic, we propose a novel iterative

eep clustering method which learns shared attributions of objects

nd clusters image regions. The most straightforward idea is to di-

ectly cluster image regions. However, it is hard to design robust

eatures to cluster them, besides, we cannot guarantee that each

luster is corresponding to each object class. So we propose to use

he initial object localization as guidance and learn the shared at-

ributions of objects from them. The learned model is then used to

xtract features of image regions and cluster them. This process is

onducted iteratively, i.e., we further learn features from the clus-

ered regions and then cluster them with more robust features. The



22 X. Wang, H. Ma and S. You / Neurocomputing 381 (2020) 20–28 

Fig. 3. In autonomous driving scenes, objects share more similarities, we can learn their shared contributions from coarse seeds regions to expand object region. 
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final clustered object regions are used for supervising a segmenta-

tion network. 

Fig. 1 shows the pipeline and some visual examples of the ini-

tial localization and the produced result of our method. Though the

initial localization is extremely coarse, our produced segmentation

results achieve decent performance. The main contributions of our

work are: 

• We propose to learn discriminative visual features from sim-

ple images to produce initial object localization in complex au-

tonomous driving scenes. 

• We present an iterative deep clustering method which learns

features and clusters image regions using initial object localiza-

tion as guidance to expand object regions. 

• To the best of our knowledge, this is the first solution which

achieves single image weakly-supervised semantic segmenta-

tion in complex autonomous driving scenes with only image

tags. We achieve better performance than the previous meth-

ods on the Cityscapes and the CamVid datasets. 

2. Related work 

2.1. Fully-supervised semantic segmentation 

Semantic segmentation is a fundamental task in computer vi-

sion. In the past years, a large number of methods [15–22] have

been proposed and achieved quite satisfactory results. Long et al.

[15] propose fully convolutional networks (FCN) by introducing

fully-convolutional layers to produce pixel-wise prediction of im-

age semantic. Chen et al. [16,17] propose Deeplab network by

introducing atrous convolution to enlarge the field of view of fil-

ters. Conditional Random Field (CRF) is applied as post-processing

to improve localization performance. To consider more context in-

formation, Zhao et al. [18] present PSPNet which fuses different-

region-based context with pyramid pooling module. Lin et al.

[19] exploit all information from deep layers to shallow layers

with a multi-path refinement network to produce segmentation re-

sults with high resolution. However, fully-supervised methods re-

quire a huge amount of pixel-level annotations, which is very time-

consuming and thus limits its application. 

2.2. Weakly-supervised semantic segmentation 

Weakly-supervised semantic segmentation only requires much

fewer annotations, for example, bounding box [23] , scribbles [24] ,

points [25] and image tags [4,8,10,11,26–32] . In this paper, we focus

on supervision with image tags. 

As only image tags, i.e., object classes, are available, previous

weakly-supervised methods rely on classification network to locate

objects. Many methods [4,11,30] solve weakly-supervised semantic

segmentation as a Multi-Instance Learning (MIL) problem in which

each image is taken as a package and contains at least one pixel

of the known classes. By globally pooling the last feature map, the

semantic segmentation problem is transformed to a classification
ask, and the segmentation results are produced from the last fea-

ure map. Kolesnikov and Lampert [8] put forward three kinds of

osses based on initial object seeds produced by classification net-

orks [14] . These losses aim to expand object regions from seeds

nd constrain them inside object boundary. Wei et al. [10] pro-

ose an adversarial erasing method which sequentially discovers

ew object regions from the erased images using classification net-

orks. 

These methods all rely on class labels to train classification net-

orks and to produce discriminative regions of objects. However,

hen comes to complex autonomous driving scenes, as each image

ontains almost all classes, they cannot be used to train classifica-

ion networks, so previous methods proposed for simple images

ill fail on complex autonomous driving scenes. 

In [33] , Saleh et al. propose weakly-supervised semantic seg-

entation method for urban scene by considering multiple back-

round classes. However, it relies on the optical flow of videos

s supervision to train a two-stream network, thus cannot be

pplied to scenes with still images. Among existing methods,

10,32,34] also adopt seed expansion strategy. Wei et al. use CAM

o progressive mine discriminative regions from images, thus ex-

anding object masks. Wang et al. iteratively mine robust com-

on object features with a bottom-up and top-down framework.

uang et al. integrate seeded region growth (SGR) into seman-

ic segmentation networks to expand seed regions. However, our

ethod utilizes deep clustering framework to progressive learn

obust clustering features and obtain better clusters, i.e., object

asks. This is based on our observation that there exists much

imilarities in driving scenes, so we can cluster them to generate

ntegral object masks. 

.3. Webly-supervised semantic segmentation 

Webly-supervised semantic segmentation methods [35–38] use

mages queried from internet to train and locate object masks.

hese images are usually simple and easy to learn object masks,

hus can be used as supervision of multi-class semantic segmenta-

ion. Our method also trains localization network from simple im-

ges and then transfers it to complex scenes. However, we have

uch differences with webly-supervised approaches. In webly-

upervised methods, the simple images are usually taken as a sup-

lementary supervision to boost typical weakly-supervised seman-

ic segmentation networks. While in our work, the target domain,

.e., the driving scenes, cannot be used to train a localization net-

ork, and thus we propose to learn from simple images to asso-

iate image tags with distinctive visual features. In most webly-

upervised methods, the transferred information is object masks,

hile ours is features. 

. The proposed framework 

The motivation of our approach is that, in autonomous driving

cenes, objects within the same class share more similarities, as all

mages have a very similar appearance. So we can learn the shared

ttributions of each class and use the learned features to cluster
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Fig. 4. Produced object heatmap by classification network. (a) Directly applying trained network to whole image, the produced localization only focuses on few discriminative 

objects, e.g., road, while other objects are suppressed. (b) applying trained network to image patches. By processing images for each patch, the classification network can 

localize more diverse object regions, e.g., road, traffic sign, vegetation, sky, etc. Some non-exist objects, e.g., truck, bus, train, can be excluded as we have the image tags. 
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mage regions. While directly clustering them is not feasible as it’s

ard to extract robust features and we can not guarantee that each

luster is corresponding to each object class. So we first produce

nitial object localization and use it as guidance to cluster image

egions. 

Our framework consists of three parts: (1) Initial object lo-

alization. We take advantages of simple images, e.g., ImageNet

ataset, to train a discriminative classifier and then localize object

eed regions with CAM method [14] . (2) Object seeds guided deep

lustering. We learn shared attributions of each object class and

se the learned attributions to cluster image regions to expand ob-

ect regions. This process is conducted iteratively, i.e., learn shared

ttributions from the expanded object regions and get better clus-

ers. (3) Weakly-supervised semantic segmentation. The produced

bject regions from part (2) are used as segmentation labels to

rain the segmentation network. Fig. 1 shows an illustration of the

roposed framework and some intermediate visual results. 

.1. Initial object localization 

One of the main challenges in weakly-supervised semantic seg-

entation is that only image tags are available, and no location

nformation is provided. In simple scenes, such as the PASCAL VOC

ataset, only one or a few objects are presented in images, so the

ags associated with the image are highly distinguished and infor-

ative. However, in complex autonomous driving scenes, almost

ll object classes are presented in every single image and thus the

lass labels contain hardly any information to localize objects. To

ddress this issue, we propose to take advantages of simple im-

ges, such as ImageNet dataset [13] , to train a discriminative clas-

ifier which associates the image tags with distinctive visual fea-

ures. 

To be specific, first, we select classes from the ImageNet dataset

hich are corresponding to our dataset, and train a classification

etwork with the VGG16 network [39] . With the trained network,

e can then produce object heatmap using the Class Activation

ap method (CAM) [14] . 

However, in autonomous driving scenes, objects are clustered,

.e., a large number of objects will appear in every single image. If

irectly apply the trained network, it is difficult to produce dis-

riminative regions of each object. Some salient objects will af-

ect other non-salient objects, so the produced localization only

ocuses on a part of discriminative objects. In addition, the size

f objects is varied due to changes in distance, objects with small

ize are hard to locate when taking the whole image as input.

ig. 4 (a) shows an example. When directly applied to the whole

mage, only the regions of road (the top left corner image) are

mphasized, while other objects are suppressed. To address this

roblem, we propose to segment images into patches, so that the

lassification network can better handle discriminative objects and
mall objects. For the Cityscapes dataset, the original resolution is

048 × 1024, we segment it into 8 patches (4 × 2), and for the

amVid dataset [12] , the original resolution is 960 × 720, we seg-

ent it into 12 patches (4 × 3), so that each patch is square to

revent deformation. Fig. 4 (b) shows an example when applying

he classification network to image patches. We can see that the

roduced heatmap can localize more diverse objects. With these

eatmaps, we then segment image into superpixel regions [40] and

elect regions with maximum object heatmap as initial object

eeds. 

.2. Object seeds guided deep clustering 

In autonomous driving scenes, one important characteristic is

hat, in autonomous driving scenes, objects within the same class

ave more similarities, i.e., shared attributions, as all images in au-

onomous driving scenes have a very similar appearance. In addi-

ion, objects are clustered, i.e., many objects appear in every single

mage, so they provide us with more training instances to learn

he shared attributions of objects. Motivated by this, we propose

o cluster image regions to generate region masks of each object.

he most straightforward idea is to direct cluster these objects.

owever, it is hard to design robust features to cluster them, be-

ides, we can not guarantee that each cluster is corresponding to

ach object class. To address these issues, in this paper, we argue

hat the initial object seeds provide us with significant informa-

ion about objects, so we propose a deep clustering method with

he initial object seeds as guidance. 

In detail, we train a neural network using the initial object

eeds and then extract features of other regions with the trained

etwork. First, we segment images into superpixel regions [40] ,

uperpixels within the initial object seeds are marked with cor-

esponding class labels and other superpixels are labeled as un-

nown. We then use these labeled superpixels as supervision to

rain a region classification network. With the trained network, we

xtract features of each region and use these features to repredict

ew labels for all superpixel regions. We name our method as deep

lustering as we use the learned features to cluster regions and our

bjective is to minimize the variance within the same class and

aximize the variance among different classes. These processes

re conducted iteratively, i.e., we further use the new predicted la-

els as supervision to optimize the network to progressively mine

obust features and object regions. 

Formally, given a set of M training images I = { I i } M 

i =1 
, we seg-

ent image I i into N i superpixel regions to obtain I R = { I R 
i, j 

} M,N i 
i =1 , j=1 

.

ith the produced initial object seeds S = { S i, j } M,N i 
i =1 , j=1 

, our goal is

o optimize the network θ to mine robust features to represent

hared attributes of objects, and thus to predict accurate object la-
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Fig. 5. Visual examples of iterative deep clustering. Starting from very coarse and inaccurate initial localization, the object seeds guided deep clustering can progressively 

cluster and expand object regions. 
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bels y by solving 

arg min 

y,θ

L (y, θ | I R ) . (1)

We solve Eq. (1) by fixing one of the parameters { y, θ} and de-

compose it into two alternating steps: 

arg min 

θ

L (θ | y, I R ) , (2)

arg min 

y 
L (y | θ, I R ) . (3)

In Eq. (2) , we fix the region labels to optimize the network pa-

rameter θ . And in Eq. (3) , with the trained network parameter θ ,

we predict class labels of given image regions I R . These two steps

are iteratively optimized to progressively mine shared attributes of

objects in each class and cluster object regions. 

We realize the region classification network with the Mask-

based Fast R-CNN framework [41] , which can extracts features of

irregular superpixel regions efficiently. Our goal is to learn high-

level features and use them to cluster regions. To achieve better

performance, we require the learned features to have large vari-

ance among different classes and small variance within the same

class. To this end, we introduce two kinds of losses to train the

network. The first loss is cross-entropy loss, which encourages

large variance among different classes, and it is defined as: 

L 1 = −
∑ 

i, j,c 

S i, j (c) log( f c (I R i, j | θ )) , (4)

where S i,j ( c ) is the label of region I R 
i, j 

, S i, j (c) = 1 if region I R 
i, j 

be-

longs to class c , otherwise S i, j (c) = 0 . f c (I R 
i, j 

| θ ) denotes the classi-

fication score of region I R 
i, j 

being predicted as class c . 

The second loss is the center loss [42] , which aims to produce

small variance within the same class: 

L 2 = 

1 

2 

∑ 

i, j 

|| x i, j − m y i, j 
|| 2 2 , (5)

where x i,j is the features of region I R 
i, j 

, m y i, j 
is the center of features

of class y i,j . 

Finally, we optimize Eq. (2) with the following joint supervi-

sion: 

L C = L 1 + λL 2 , (6)

we set λ = 0 . 001 based on our experiments and previous

work [42] . 
Fig. 5 shows some examples of our deep clustering. With the

xtreme coarse initial localization, our deep clustering can produce

ner annotation, and with the iterative optimization, the perfor-

ance improves gradually. 

.3. Weakly-supervised semantic segmentation 

With the object seeds guided deep clustering, object regions

re clustered to corresponding classes and thus the object regions

re expanded. With these object regions, we then take them as

egmentation labels to train the segmentation network. The train-

ng is the same as any fully-supervised semantic segmentation

etwork. In this paper, we utilize the popular DeepLab-LargeFOV

odel [43] as the basic network and use the cross-entropy loss to

ptimize the network. The final trained network is then used for

nference. 

. Experiments 

.1. Setup 

We evaluate the proposed method on two challenging datasets:

ityscapes [1] and CamVid [12] . The Cityscapes dataset contains ur-

an scenes of 50 cities, and provides 50 0 0 images with fine anno-

ations ( train : 2975, val : 500, test : 1525). There are 30 classes and

 categories in this dataset, and for public evaluation, 19 classes

re considered while leaving others as void. The CamVid dataset

ontains 701 annotated images for semantic segmentation ( train :

67, val : 101, test : 233). There are 32 semantic classes in this

atasets, following previous works [33,44] , only 11 classes are eval-

ated. In this paper, we train our method in the training set and

valuate it on the val and test sets in terms of intersection-over-

nion averaged on all classes (mIoU Class). For Cityscapes dataset,

ntersection-over-union averaged on categories (mIoU Category) is

lso evaluated. 

.2. Implementation details 

Initial object seeds. We select images from ImageNet dataset

ith same classes with Cityscapes or CamVid datasets to train the

lassification network. The network we used is VGG16 [39] . 

Object seeds guided deep clustering. We realize the object seeds

uided deep clustering with a region classification network super-

ised by cross-entropy loss and center loss. Directly training the

etwork with joint supervision will make the prediction bias to
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Fig. 6. Qualitative segmentation results on Cityscapes and CamVid datasets. 

Table 1 

Results on the Cityscapes val set. 

Methods Supervision mIoU Class mIoU Cat. 

CCNN [ICCV’15] Image tags 7.3 16.3 

SEC [ECCV’16] Image tags 2.3 7.1 

PSA [CVPR’18] Image tags 21.6 39.0 

Ours Image tags 24.2 50.2 

Table 2 

Results on the Cityscapes test set. 

Methods Supervision mIoU Class mIoU Cat. 

CCNN [ICCV’15] Image tags 7.2 17.2 

SEC [ECCV’16] Image tags 2.4 7.2 

BBF [ICCV’17] Tags & videos 24.9 47.2 

PSA [CVPR’18] Image tags 21.2 40.2 

Ours Image tags 24.9 53.7 
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Table 3 

Results on CamVid val set. 

Methods Supervision mIoU 

CCNN [ICCV’15] Image tags 2.9 

PSA [CVPR’18] Image tags 11.0 

Ours Image tags 23.5 

Table 4 

Results on CamVid test set. 

Methods Supervision mIoU 

CCNN [ICCV’15] Image tags 2.4 

SEC [ECCV’16] Image tags 2.5 

BBF [ICCV’17] Image tags & videos 29.7 

PSA [CVPR’18] Image tags 15.5 

Ours Image tags 30.4 
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bjects with larger regions, for example, road and building, as the

enter loss will get a very low value in that case. So we first

rain the network with only cross-entropy loss for 40,0 0 0 itera-

ions, then we continue to finetune it with both losses for 50 0 0

terations. 

Weakly-supervised semantic segmentation network. We use the

eepLab-LargeFOV [43] pre-trained on ImageNet as basic network

f our segmentation network. 

All the networks are realized and trained on Caffe frame-

ork [45] . All code will be released and more details can be found

n it. 

.3. Evaluation and comparison 

We evaluate our method on Cityscapes [1] and

amVid [12] datasets, and compare with previous methods.

o our best knowledge, weakly-supervised semantic segmentation

n complex scenes with only image tags, such as Cityscapes and

amVid datasets with still images, has not be exploited before. For

omparison, we implement previous weakly-supervised methods

n Cityscapes and CamVid datasets. As only a few methods have

ode released, here we compare with CCCN [11] , SEC [8] and

SA [46] . These methods are proposed for simple scenes, i.e., the

ASCAL VOC dataset. We also compare with a weakly-supervised

ethod based on videos: BBF [33] . For CCCN [11] , it’s an end-

o-end method, so we directly apply it to autonomous driving

cenes. For SEC [8] and PSA [46] , they rely on initial localization,

ut their methods cannot get initial localization on autonomous

riving scenes, here, we use localization generated by our method.

he results are shown in Tables 1–4 . Our method outperforms all

ther methods. For CCNN method, it is based on multi-instance
earning, so it mainly focuses on objects with large size, such as

oad and building. For SEC method, it has three kinds of constrain

o train the network, these constrain is not applicable in complex

cenes, it’s output has a very strong bias, such as road and sky

n Cityscapes, and building in CamVid. For PSA, it is based on

he initial localization of our method, and then learn affinity to

efine it, so it achieves a relative decent performance. For BBF, it

lso uses images from ImageNet dataset, in addition, it also uses

ptical flow in videos, however, our method still performs better

han it with only still images. Some qualitative results are shown

n Fig. 6 . 

.4. Ablation studies 

We conduct experiments to evaluate the effectiveness of our

ethod, all results are evaluated on the Cityscapes dataset. 

.4.1. Localization from image patches 

We evaluate the effectiveness of generating initial localization

rom image patches by comparing with directly applied to whole

mages. Fig. 7 shows some examples when we apply the trained

etwork to whole images and image patches. We can see that

hen directly applied to whole images, the localization heatmap

s coarse and diffused, and when applied to image patches, the

eatmap can better locate discriminative regions of objects. We

lso list the localization accuracy in terms of IoU in Table 5 . These

esults demonstrate the effectiveness of generating initial localiza-

ion from image patches. Our method can prevent the impact that

alient objects suppress the heatmap of other objects, and we can

etter handle objects with small size, for example, light, sign and

erson. In addition, if we directly generate from whole images, we
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Fig. 7. Comparison of generating initial localization from (b) whole images and (c) image patches. When directly applied to whole images, the produce heatmap only focus 

on a few salient objects, and objects with small size are hard to locate. While applied to each patch of images, these issues can be better handled. 

Table 5 

Evaluate the effectiveness of generating initial object seeds from image patches. 

road sidewalk building wall fence pole light sign vegetation terrain sky person rider car truck bus train motor bike mIoU 

Whole image 3.2 5.0 0.6 0.3 0.2 0.0 3.4 0.2 0.3 0.5 0.0 1.0 1.6 0.5 3.3 7.4 15.0 1.4 0.0 2.3 

Image patches 0.7 3.7 5.0 1.3 1.2 1.2 10.3 9.3 4.4 1.8 4.9 3.9 1.0 4.4 4.8 7.6 4.6 3.9 0.4 3.9 

Table 6 

Evaluate the effectiveness of deep clustering. 

Methods mIoU Class mIoU Cat. 

Seeds 3.9 4.7 

Deep Clustering-1 16.5 21.1 

Deep Clustering-2 19.1 37.7 

Deep Clustering-3 19.6 38.3 

Table 7 

Evaluate the effectiveness of joint supervision with center loss. 

Without center loss With center loss 

mIoU Class mIoU Cat. mIoU Class mIoU Cat. 

DC-1 16.2 19.3 16.5 21.1 

DC-2 18.6 36.7 19.1 37.7 

DC-3 19.6 37.9 19.6 38.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

Comparison on the PASCAL VOC 2012 dataset. 

Methods val set test set 

CCNN [11] [ICCV’15] 35.3 35.6 

SEC [8] [ECCV’16] 50.7 51.7 

STC [35] [PAMI’17] 49.8 51.2 

SPN [28] [AAAI’17] 50.2 46.9 

AE-PSL [10] [CVPR’17] 55.0 55.7 

LCEM [31] [NEUCOM’18] 45.4 46.0 

MCOF [34] [CVPR’18] 56.2 57.6 

DSRG [32] [CVPR’18] 59.0 60.4 

Ours 55.6 57.2 

Table 9 

Results with other segmentation networks on the 

Cityscapes val set. 

Segmentation Networks mIoU class mIoU cat. 

FCN [15] 22.3 49.4 

DRN-D-105 [47] 23.7 50.6 

DeepLab-LargeFOV [43] 24.2 50.2 
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cannot obtain localization for classes of pole, sky and bike, while

our approach can provide significant localization information for

all classes. 

4.4.2. Iterative deep clustering 

To evaluate the effectiveness of the iterative deep clustering, we

list the intermediate results in Table 6 . The initial object seeds pro-

vide very coarse localization, only 3.9% in mIoU Class and 4.7% in

mIoU Category. However, these seeds give us significant knowledge

about objects, with the object seeds guided deep clustering, more

object regions are clustered to correct classes, and the performance

is increased by a large margin and achieves 16.5% in mIoU Class

and 21.1% in mIoU Category. In the later iterations, the object re-

gions are gradually corrected and the performance improves pro-

gressively. 

4.4.3. Joint supervision with center loss 

To evaluate the effectiveness of the joint supervision with the

center loss, we compare the performance with the method using

only cross-entropy loss. Table 7 shows the results on the Cityscapes

dataset. With the help of center loss, we can achieve a relatively

higher performance. 

4.4.4. Results on the PASCAL VOC 2012 dataset 

Our method is also applicable to simple scenes, such as the

PASCAL VOC 2012 dataset. For initial localization, following pre-
ious methods, we directly train classification network with im-

ges from the PASCAL VOC 2012 dataset. Table 8 shows the com-

arison with up-to-date weakly-supervised methods: CCNN [11] ,

EC [8] , STC [35] , SPN [28] , AE-PSL [10] , LCEM [31] , MCOF [34] and

SRG [32] . Though we aim to solve weakly-supervised semantic

egmentation in complex autonomous driving scenes, on the sim-

le PASCAL VOC 2012 dataset, our approach is better than most

revious methods. However, on the PASCAL VOC 2012 dataset, the

imilarities between images are weaker than in the driving scenes,

o our method is inferior to recent state-of-the-art approaches

hich are designed for the PASCAL VOC dataset. 

.4.5. Results with other segmentation networks 

We further conduct experiments using different segmentation

etworks: FCN [15] , DRN-D-105 [47] and DeepLab-LargeFOV [16] .

e use the synthesized segmentation labels from the proposed

eep clustering as pseudo-supervision to train these networks, and

valuate them on the Cityscapes validation set. Table 9 shows the

esults. As the proposed approach is a unified weakly-supervised

earning framework, we can take advantages of all existing seg-

entation networks in different situations. 
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Table 10 

IoU of all classes on Cityscapes val set. 

road sidewalk building wall fence pole light sign vegetation terrain sky person rider car truck bus train motor bike mIoU 

Cityscapes 57.1 19.3 61.5 0.0 1.3 2.8 3.4 10.6 58.5 6.2 50.4 35.9 0.0 63.4 4.4 21.9 5.0 19.5 38.2 24.2 
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.5. Failure cases 

The proposed method solves weakly-supervised semantic seg-

entation in complex driving scenes and performs better than

revious method which uses additional video information. While

riving scenes are very challenging, there are some failure cases

orth further researching. Table 10 shows the IoU for all classes in

he Cityscapes validation set. The proposed method achieves rela-

ive good performance on some large or common objects, such as

oad, building, vegetation, sky, person, car and bike. The reason is

hat these classes have large area or more instances, so our clus-

ering method can effectively cluster them and obtain better ob-

ect masks. However, for some classes that are rare to appear, such

s wall and fence, the performance is still quite low, as they have

ess samples to train the deep clustering. In addition, for the rider

lass, as it is very confusing with person and bike, it is also diffi-

ult to segment. In the future work, we will explore solution for

hese hard classes. 

. Conclusion 

In this paper, we solve weakly-supervised semantic segmenta-

ion in complex autonomous driving scenes. To localize objects,

e propose to learn discriminative visual features from simple im-

ges, and produce initial localization with the learned features in

utonomous driving scenes. Using the initial localization as object

eeds, an object seeds guided deep clustering method is proposed

o iteratively learn shared attributions of objects of each class and

o expand object regions. These object regions are then used as

upervision to train the segmentation network. Experimental re-

ults on the Cityscapes and CamVid datasets demonstrate that our

ethod achieves decent performance, and we also outperform the

revious state-of-the-art weakly-supervised method which used

ddition optical flow in videos as supervision. 
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