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ABSTRACT
In recent years, a variety of salient object detection method-

s under Bayesian framework have been proposed and many

achieved state of the art. However, those ignore spatial re-

lationships and thus background regions similar to the ob-

jects are also highlighted. In this paper, we propose a nov-

el geodesic weighted Bayesian model to address this issue.

We consider spatial relationships by attaching more impor-

tance to regions which are more likely to be parts of a salient

object, thus suppressing background regions. First, we learn

a combined similarity via multiple features to measure sim-

ilarity of adjacent regions. Then, we apply the combined

similarity as edge weight to construct an undirected weight-

ed graph and compute geodesic distance. Last, we utilize the

geodesic distance to weight the observation likelihood to infer

a more precise saliency map. Experiments on several bench-

mark datasets demonstrate the effectiveness of our model.

Index Terms— Salient object detection, geodesic weight,

Bayesian framework, superpixel

1. INTRODUCTION

Salient object detection has been an important research area

in computer vision, with its wide applications such as image

segmentation [1], object recognition [2] and content-aware

image editing [3]. Due to the lack of a clear definition, al-

most all bottom-up methods try to compute a saliency map

using some assumptions on object and background. Center-

surround difference [4, 5] is an early and widely used met-

ric which assumes that the contrast between salient objects

and their surrounding regions is high. In addition, center pri-

or [6, 7] and backgroundness prior [8] have been proposed

based on the observation that objects usually lie near the cen-

ter of the image and thus the border of an image is more likely

to be background. However, these bottom-up methods suffer

from two main drawbacks. First, these bottom-up methods

are sensitive to noise when the background is complex. Sec-

ond, they are unable to uniformly highlight the whole salient

object.
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The Bayesian framework is an effective model to address

the above problems. However, a general Bayesian frame-

work can only make small improvement since it ignores s-

patial relationships. As a result, background regions similar

to object will also be highlighted. In [9], Bayesian model us-

ing low and mid level cues was proposed and achieved state-

of-the-art result. However, the main reason for this was it-

s time-consuming computation for prior distribution, and it

also showed a weakness in suppressing background regions

effectively.

Motivated by the problems with bottom-up methods, and

the drawbacks of existing Bayesian framework mentioned

above, we propose an effective Geodesic Weighted Bayesian

model to improve the quality of salient object detection. We

consider spatial relationships by attaching more importance

to regions which are more likely to be parts of a salient object,

thus suppressing the background regions. Geodesic distance

is an effective metric which considers both appearance sim-

ilarities and spatial distance, so we utilize geodesic distance

as the weight. Our main contributions are threefold. First,

we propose an effective method for extracting initial salient

regions. Second, we learn a combined similarity via multiple

feature to measure the similarity of adjacent regions, namely,

the probability of being parts of the same object. Third, we

utilize the combined similarity as edge weight to construct

an undirected weighted graph to compute geodesic distance.

The geodesic distance is used to weight observation likeli-

hood. Using the saliency maps of existing methods as prior

distribution, we obtain a geodesic weighted Bayesian model

which generates more precise saliency maps. Our model can

be integrated to all existing methods and improve the quality

of most methods.

2. THE PROPOSED METHOD

Given an image, we segment it into superpixels (i.e., regions,

used interchangeably) using the SLIC algorithm [10]. Then

as in [9], the Bayesian inference for estimating saliency map

is formulated as

p(sal|v) = p(sal)p(v|sal)
p(sal)p(v|sal) + p(bg)p(v|bg) , (1)



where p(sal) denotes the prior distribution of the salient re-

gions and p(bg) = 1−p(sal). v denotes the feature vector of

a given pixel. p(v|sal) and p(v|bg) (shorthand for p(v|sal =
1) and p(v|bg = 1)) denote the observation likelihoods which

are computed inside and outside the initial salient regions, re-

spectively.

2.1. Extracting Initial Salient Regions

In contrast to [9] which computes a convex hull via interest

points, we initialize the salient regions using binarized region

contrast weighted by spatial distance [11] based on our ob-

servation that region contrast can highlight the most salient

regions effectively in most cases. A superpixel’s contrast is

formulated as

Ctr(p) =

N∑

i=1

dsp(p, pi)wpos(p, pi), (2)

where dsp(p, pi) = max(colDist(p, pi), lbpDist(p, pi))
denotes the feature distance between superpixel p and pi,
with colDist(p, pi) and lbpDist(p, pi) representing the χ2

distance of Lab color histograms and Local Binary Pattern-

s (LBP) [12, 13] histograms, respectively. wpos(p, pi) =

exp(−d2
pos(p,pi)

2σ2
pos

) denotes the spatial weight, while dpos(p, pi)

denotes the Euclidean distance between the center of super-

pixel p and pi, and σpos = 0.25 as in [14, 15]. N represents

the number of superpixels. The initial salient region set

SalSPs is defined as

SalSPs = {p|Ctr(p) > th}, (3)

with th = 0.75 which was empirically found to give.

2.2. Geodesic Weight

The general Bayesian framework often suffers from high-

lighting regions in background which are similar to objects

since it ignores spatial relationships. To address this issue, we

attach more importance to regions which are not only simi-

lar but also near to objects, namely, regions which are more

likely to be parts of a salient object. Geodesic distance is an

effective metric which considers both appearance similari-

ties and spatial distance. To compute the geodesic distance

between regions, we construct an undirected weighted graph

by connecting all adjacent superpixels. To measure the sim-

ilarity of adjacent regions, namely, the probability of being

parts of the same object, we learn a combined similarity via

multiple features and use it as edge weight of the graph. The

combined similarity Φ(pi, pj) between superpixel pi and pj
is formulated as

Φ(pi, pj) =
∑

s∈{c,t,b}
wsfs(pi, pj) + b, (4)

with ws denotes the feature weight and b denotes the bias.

(a) (b)

Fig. 1. (a) A comparison between convex hull in [9] and our

initial salient regions (Sec. 2.1). (b) A comparison between

three incomplete models and our model. We use the saliency

map of FT [17] as prior distribution for example, similar re-

sults are also observed on other methods but omitted here for

brevity.

Table 1. Feature weights
Feature Color Similarity Texture Similarity Common Border Ratio b

Weight 8.99 2.25 1.40 -3.28

The feature similarities we used are:

Color Similarity fc: color similarity is an effective cue to

measure the similarity between two regions. We define color

similarity using χ2 distance of Lab color histograms with 32

bins for each channel.

Texture Similarity ft: texture similarity is complemen-

tary to color similarity. We define the texture similarity using

χ2 distance of LBP histograms with 32 bins for each region.

Common Border Ratio fb [16]: the common border ra-

tio represents the connections between two adjacent regions

which is formulated as fb(i, j) = max(
li|j
li
,
li|j
lj
),

where li and lj represent the perimeters of superpixels i
and j, respectively, li|j represents the length of their common

border.

The weights we have learned via SVM are shown in Ta-

ble 1. Then we normalize the combined similarity using sig-

moid function as

Sim(pi, pj) =
1

1 + exp(−Φ(pi, pj))
. (5)

So the edge weight We(pi, pj) between vertex pi and pj is

We(pi, pj) = 1− Sim(pi, pj). (6)

The geodesic distance dgeo is defined as the accumulated edge

weights along their shortest path on the graph [15], then the

geodesic weight is defined as

Wgeo(pi, pj) = exp(−d2geo(pi, pj)

2σ2
geo

). (7)

Empirically, we set σgeo = 0.1 in our experiments.



Fig. 2. Comparison of different methods with their improved versions (*). The first row are tested on ASD [17] and the second

are on CSSD [18]. The first two columns show the improvement of PR curves and the last column shows the improvement of

F-measure.

2.3. Geodesic Weighted Observation Likelihood

We consider spatial relationships by attaching more im-

portance to the regions near (in geodesic distance) to the

initial salient regions, the observation likelihood p(v|sal)
and p(v|bg) is formulated by regions and weighted by the

geodesic weight as

p(v|sal) =
∑

pi∈SalSPs

p(sal)geo (pi)p(v|sal, pi), (8)

p(v|bg) =
∑

pi /∈SalSPs

p(bg)geo (pi)p(v|bg, pi), (9)

with

p(sal)geo (pi) =
mean(Wgeo(pi, SalSPs))∑

pj∈SalSPs

mean(Wgeo(pj , SalSPs))
, (10)

p(bg)geo (pi) =
mean(Wgeo(pi, SalSPs))∑

pj /∈SalSPs

mean(Wgeo(pj , SalSPs))
, (11)

which denote the normalized mean geodesic distance between

superpixel pi and the initial salient superpixels.

In [9], given a pixel x, the feature vector v is only repre-

sented by its Lab color channels. In our work, we also adopt

texture feature LBP, i.e., v(x) = [l(x), a(x), b(x), lbp(x)].
Then the observation likelihood of a given pixel x in super-

pixel pi is calculated similar as [19, 9],

p(v|sal, pi) =
∏

f∈{l,a,b,lbp}

Npi(f(x))

Npi
, pi ∈ SalSPs, (12)

p(v|bg, pi) =
∏

f∈{l,a,b,lbp}

Npi(f(x))

Npi
, pi /∈ SalSPs, (13)

where Npi is the number of pixels within superpixel pi,
Npi(f(x)) is the number that superpixel pi contains f(x).
f ∈ {l, a, b, lbp} denotes the component of feature vector v.

In summary, substituting observation likelihood (8) and

(9) into (1), and utilizing saliency map of existing methods

as prior distribution, we obtain a geodesic weighted Bayesian

model which generates a more precise saliency map.

3. EXPERIMENTS

We test our method on two standard benchmark datasets: AS-

D [17] and CSSD [18]. ASD which contains 1000 images is

widely used and relatively simple while CSSD containing 200

images which is more challenging. The code of our proposed

model is available on our project site.
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Fig. 3. Qualitative comparison of numerous methods with their improved versions. The first column shows source images and

ground truth. For the second to the last column, the odd rows show saliency maps of existing methods, the even rows show their

improved results via our model. The background regions are strongly suppressed and the improved maps are more uniform.

3.1. Evaluation of the Effectiveness of Our Model

We extensively conduct experiments to verify the effective-

ness of our model. To evaluate our proposed initial salient re-

gions in Sec. 2.1, we apply the convex hull in [9] to our mod-

el and compare their performances. To evaluate our proposed

texture feature in feature vector and geodesic weight in com-

puting observation likelihood in Sec. 2.3, we remove them

from our model respectively, thus we get three incomplete

models: model without texture feature and geodesic weight,

model without texture feature, and model without geodesic

weight. The results are shown in Fig.1. Fig.1(a) demonstrates

that our method for extracting initial salient region is more

effective than the convex hull proposed in [9] in improving

the quality of saliency map. From Fig.1(b), we can conclude

that both texture feature and geodesic weight make significant

contributions to our model, and geodesic weight has a greater

impact.

3.2. Comparison with State-of-the-Art Methods

We integrate our model into numerous state-of-the-art meth-

ods, namely, utilizing their saliency map as prior distribution:

LC [20], FT [17], HC [11], RC [11], SF [14], GS [8], GC [21],

HDCT [22].

For performance evaluation, we utilize precision-recall

curves (PR curves) and F-measure. We normalize the salien-

cy map to [0, 255] and then binarize it with threshold from 0

to 255, so we get 256 pairs of precision-recall data, the PR

curves are calculated by averaging them on each dataset. We

compute the F-measure using Eq.14 for each precision-recall

pair and report the average,

Fβ =
(1 + β2)Precision×Recall

β2Precision+Recall
. (14)

As suggested in many prior works, we set β2 = 0.3.

We utilize the saliency map of the above methods as the

prior distribution in our model, Fig.2 shows the PR curves

and F-measure with the original and improved methods com-

pared. We can see that both PR curves and F-measure are sig-

nificantly improved. In addition, the PR curves also show that

our improved versions have a higher minimum recall value

compared with original methods, which means our improved

model is able to detect more precise saliency maps than be-

fore. A qualitative comparison is also shown in Fig. 3.

4. CONCLUSION

In this paper, we propose a novel geodesic weighted Bayesian

model to improve the quality of salient object detection. Mo-

tivated by the drawback of the general Bayesian framework

that it ignores spatial relationships, we attach more impor-

tance to regions which are more likely to be parts of salient

object, thus suppressing background regions similar to salient

object. Experiments demonstrate that the method for extract-

ing initial salient regions is effective. Both texture feature and

geodesic weight make significant contributions to our model,

and geodesic weight has a greater impact. When integrat-

ed into existing methods, our approach significantly improves

performances.
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