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Abstract

Weakly-supervised semantic segmentation under image
tags supervision is a challenging task as it directly as-
sociates high-level semantic to low-level appearance. To
bridge this gap, in this paper, we propose an iterative
bottom-up and top-down framework which alternatively ex-
pands object regions and optimizes segmentation network.
We start from initial localization produced by classification
networks. While classification networks are only responsive
to small and coarse discriminative object regions, we argue
that, these regions contain significant common features
about objects. So in the bottom-up step, we mine common
object features from the initial localization and expand
object regions with the mined features. To supplement non-
discriminative regions, saliency maps are then considered
under Bayesian framework to refine the object regions.
Then in the top-down step, the refined object regions are
used as supervision to train the segmentation network
and to predict object masks. These object masks provide
more accurate localization and contain more regions of
object. Further, we take these object masks as initial
localization and mine common object features from them.
These processes are conducted iteratively to progressive-
ly produce fine object masks and optimize segmentation
networks. Experimental results on Pascal VOC 2012
dataset demonstrate that the proposed method outperforms
previous state-of-the-art methods by a large margin.

1. Introduction
Weakly-supervised semantic segmentation under image

tags supervision is to perform a pixel-wise segmentation of
an image, providing only the labels of existing semantic ob-
jects in the image. Because it relies on very slight human
labeling, it benefits a number of computer vision tasks, such
as object detection [8] and autonomous driving [3].
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Figure 1. (a) Illustration of the proposed MCOF framework. Our
framework iteratively mines common object features and expands
object regions. (b) Examples of initial object seeds and our mined
object regions. Our method can tolerate inaccurate initial localiza-
tion and produce quite satisfactory results.

Weakly-supervised semantic segmentation is, however,
very challenging as it directly associates high-level seman-
tic to low-level appearance. Since only image tags are avail-
able, most previous works rely on classification networks to
localize objects. However, while no pixel-wise annotation
is available, classification networks can only produce inac-
curate and coarse discriminative object regions, which can
not meet the requirement of pixel-wise semantic segmenta-
tion, and thus harms the performance.

To address this issue, in this paper, we propose an iter-
ative bottom-up and top-down framework, which tolerates
inaccurate initial localization by Mining Common Object
Features (MCOF) from initial localization to progressively
expand object regions. Our motivation is, though the initial
localization produced by classification network is coarse, it



gives certain discriminative regions of objects, these region-
s contain important knowledge about objects, i.e. common
object features. For example, as shown in Figure 1 (a), some
images may locate hands of person, while other images may
locate heads. Given a set of training images, we can learn
common object features from them to predict regions of w-
hole object. So in the bottom-up step, we take the initial
object localization as object seeds and mine common ob-
ject features from them to expand object regions. Then in
the top-down step, we train segmentation network using the
mined object regions as supervision to predict fine object
masks. The predicted object masks contain more regions of
objects, which are more accurate and provide more training
samples of objects, so we can further mine common object
features from them. And the processes above are conducted
iteratively to progressively produce fine object regions and
optimize segmentation networks. With iterations, inaccu-
rate regions in the initial localization are progressively cor-
rected, so our method is robust and can tolerate inaccurate
initial localization. Figure 1 (b) shows some examples in
which the initial localization is very coarse and inaccurate,
while our method can still produce satisfactory results.

Concretely, we first train an image classification network
and localize discriminative regions of object using Classifi-
cation Activation Maps (CAM) [34]. Images are then seg-
mented into superpixel regions and are assigned with class
labels using CAM, these regions are called initial objec-
t seeds. The initial object seeds contain certain key parts of
objects, so in bottom-up step, we mine common object fea-
tures from them and then expand object regions. We achieve
this by training a region classification network and use the
trained network to predict object regions. While these re-
gions may still only focus on key part regions of objects, to
supplement non-discriminative regions, saliency-guided re-
finement method is proposed which considers both the ex-
panded object regions and saliency maps under Bayesian
framework. Then in top-down step, we train segmentation
network using the refined object regions as supervision to
predict segmentation masks. With the aforementioned pro-
cedure, we can get segmentation masks which contain more
complete object regions and are much more accurate than
the initial object seeds. We further take the segmentation
masks as object seeds, and conduct the processes iterative-
ly. With iterations, the proposed MCOF framework pro-
gressively produces more accurate object regions and en-
hances the performance of the segmentation network. The
final trained segmentation network is applied for inference.

The main contributions of our work are three-fold:

• We propose an iterative bottom-up and top-down
framework which tolerates inaccurate initial localiza-
tion by iteratively mining common object features to
progressively produce accurate object masks and opti-
mize segmentation network.

• Saliency-guided refinement method is proposed to
supplement non-discriminative regions which are ig-
nored in initial localization.
• Experiments on PASCAL VOC 2012 segmentation

dataset demonstrate that our method outperforms pre-
vious methods and achieves state-of-the-art perfor-
mance.

2. Related Work
In this section, we introduce both fully-supervised and

weakly-supervised semantic segmentation networks which
are related to our work.

2.1. Fully-Supervised Semantic Segmentation

Fully-supervised methods acquire a large number of
pixel-wise annotations, according to the process mode, they
can be categorized as region-based and pixel-based net-
works.

Region-based networks take images as a set of regions
and extract features of them to predict their labels. Mosta-
jabi et al. [17] proposed zoom-out features which combines
features of local, proximal, distant neighboring superpixels
and the entire scene to classify each superpixel.

Pixel-based networks take the entire image as input and
predict pixel-wise labels end-to-end with fully convolution-
al layers. Long et al. [16] proposed fully convolutional net-
work (FCN) and skip architecture to produce accurate and
detailed semantic segmentation. Chen et al. [2] proposed
DeepLab which introduces “hole algorithm” to enlarge the
receptive field with lower stride to produce denser segmen-
tation. A large number of works [1, 18, 32] have been pro-
posed based on FCN and DeepLab.

Pixel-based networks have been proved to be more pow-
erful than Region-based networks for semantic segmenta-
tion. However, in this paper, we take advantages of both
kinds of networks. We show that region-based networks
are powerful in learning common features of objects and
thus can produce fine object regions as supervision to train
pixel-based networks.

2.2. Weakly-Supervised Semantic Segmentation

While fully-supervised methods require a large number
of pixel-wise annotation which is very expensive, recent ad-
vances have exploited semantic segmentation with weak su-
pervision, including bounding box [4, 19, 12], scribble [15]
and image-level labels [21, 22, 25, 19, 31, 13, 23, 30]. In
this paper, we only focus on the weakest supervision, i.e.,
image-level supervision.

In image-level weakly-supervised semantic segmenta-
tion, since only image tags are available, most methods are
based on classification methods, and these methods can be
coarsely classified into two categories: MIL-based method-
s, which directly predict segmentation masks with classi-
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Figure 2. Pipeline of the proposed MCOF framework. At first (t=0), we mine common object features from initial object seeds. We
segment (a) image into (b) superpixel regions and train the (c) region classification network RegionNet with the (d) initial object seeds. We
then re-predict the training images regions with the trained RegionNet to get object regions. While the object regions may still only focus
on discriminative regions of object, we address this by (e) saliency-guided refinement to get (f) refined object regions. The refined object
regions are then used to train the (g) PixelNet. With the trained PixelNet, we re-predict the (d) segmentation masks of training images, are
then used them as supervision to train the RegionNet, and the processes above are conducted iteratively. With the iterations, we can mine
finer object regions and the PixelNet trained in the last iteration is used for inference.

fication networks; and localization-based methods, which
utilize classification networks to produce initial localization
and use them to supervise segmentation networks.

Multi-instance learning (MIL) based methods [21, 22,
13, 25, 5] formulate weakly-supervised learning as a MIL
framework in which each image is known to have at least
one pixel belonging to a certain class, and the task is to
find these pixels. Pinheiro et al. [22] proposed Log-Sum-
Exp (LSE) to pool the output feature maps into image-
level labels, so that the network can be trained end-to-end
as a classification task. Kolesnikov et al. [13] proposed
global weighted rank pooling (GWRP) method which gives
more weights to promising location in the last pooling layer.
However, while MIL-based methods can locate discrimina-
tive object regions, they suffer from coarse object bound-
aries and thus the performance is not satisfactory.

Localization-based methods [19, 31, 13, 23, 30] aim to
generate initial object localization from weak labels and
then use it as supervision to train segmentation network-
s. Kolesnikov et al. [13] used localization cues generated
from classification networks as a kind of supervision, they
also proposed classification loss and boundary-aware loss
to consider class and boundary constrain. Wei et al. [30]
proposed adversarial erasing method to progressively mine
object region with classification network. While Wei et
al. [30] also aims to expand object regions from the initial
localization. They rely on the classification network to se-
quentially produce the most discriminative regions in erased

images. It will cause error accumulation and the mined ob-
ject regions will have coarse object boundary. The proposed
MCOF method mines common object features from coarse
object seeds to predict finer segmentation masks, and then
iteratively mines features from the predicted masks. Our
method progressively expands object regions and corrects
inaccurate regions, which is robust to noise and thus can tol-
erate inaccurate initial localization. By taking advantages of
superpixel, the mined object regions will have clear bound-
ary.

3. Architecture of the Proposed MCOF
Classification networks can only produce coarse and i-

naccurate discriminative object localization, which are far
from the requirement of pixel-wise semantic segmentation.
To address this issue, in this paper, we argue that, though
the initial object localization is coarse, it contains impor-
tant features about objects. So we propose to mine com-
mon object features from initial object seeds to progressive-
ly correct inaccurate regions and produce fine object regions
to supervise segmentation network.

As shown in Figure 2, our framework consists of two
iterative steps: bottom-up step and top-down step. The
bottom-up step mines common object features from object
seeds to produce fine object regions, and the top-down step
uses the produced object regions to train weakly-supervised
segmentation network. The predicted segmentation masks
contain more complete object regions than initial. We then



Algorithm 1 Framework of the proposed MCOF
Input: Training images I and Superpixel regionsR
Initialize: Generate initial object seeds S, t = 0.
1: while iteration is effective do
2: Train the RegionNet withR and S
3: Predict with the trained RegionNet to get object

regions O.
4: if t == 0 then
5: Refine object regions O with saliency maps to

get refined object regions OR

6: else
7: OR ← O
8: end if
9: Train the PixelNet with I and OR

10: Predict with the trained PixelNet to get object
masksM

11: Update S ←M, t← t+ 1.
12: end while
Output: Mined object masksM and the trained PixelNet

take them as object seeds to mine common object features
and the processes are conducted iteratively to progressively
correct inaccurate regions and produce fine object regions.

Note that, in the first iteration, the initial object seeds
only contain discriminative regions, after mining common
object features, some non-discriminative regions are still
missing. To address this, we propose to incorporate saliency
maps with the mined object regions. After the first iteration,
the segmented masks contain much more object regions and
are more accurate, while the accuracy of saliency maps are
also limited, so in the later iterations, the saliency maps are
not used to prevent introducing additional noise. The over-
all procedure is summarized as Algorithm 1.

It is worth noting that the iterative processes are only ap-
plied in the training stage, for inference, only the segmenta-
tion network of the last iteration is utilized, so the inference
is efficient.

4. Mining Common Object Features
4.1. Initial Object Seeds

To get initial object localization, we train a classification
network and use CAM method [34] to produce heatmap of
each object. As shown in Figure 3, the heatmap is very
coarse, to localize discriminative regions of objects, first,
we segment images into superpixel regions using graph-
based segmentation method [7] and average the heatmap
within each region. We observe that the CAM map usu-
ally has several center regions with low-confidence region-
s surrounding them, and the center regions are mostly the
key part of objects. So for each heatmap, we select its lo-
cal maximum region as initial seeds. However, this may
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Figure 3. Examples of generating initial object seeds from object
heatmaps. (a) Images, (b) object heatmaps of CAM [34], (c) object
heatmaps averaged in each superpixel, (d) initial object seeds.

miss lots of regions, so regions with heatmap larger than a
threshold are also selected as initial seeds. Some examples
are shown in Figure 3.

4.2. Mining Common Object Features from Initial
Object Seeds

The initial object seeds are too coarse to meet the re-
quirement of semantic segmentation, however, they contain
discriminative regions of objects. For example, as shown in
Figure 4, one image may locate hands of a person, while an-
other may give the location of face. We argue that, regions
of same class have some shared attributions, namely, com-
mon object features. So given a set of training images with
seed regions, we can learn common object features from
them and predict the whole regions of object, thus to ex-
pand object regions and suppress noisy regions. We achieve
this by training a region classification network, named Re-
gionNet, using the object seeds as training data.

Formally, given N training images I = {Ii}Ni=1, we first
segment them into superpixel regions R = {Ri,j}N,ni

i=1,j=1

using graph-based segmentation method [7], where ni is
the number of superpixel regions of the image Ii. In
Sec 4.1, we have got initial object seeds, with them, we
can give labels for superpixel regions R and denote them
as S = {Si,j}N,ni

i=1,j=1, where Si,j is one-hot encoding with
Si,j(c) = 1 and others as 0 if Ri,j belongs to class c. Based
on training data D = {(Ri,j , Si,j)}N,ni

i=1,j=1, our goal is to
train a region classification network fr(R; θr) parameter-
ized by θr to model the probability of region Ri,j being
class label c , namely, frc (Ri,j |θr) = p(y = c|Ri,j).

We achieve this with the efficient mask-based Fast R-
CNN framework [9, 28, 29]. In this framework, we take
external rectangle of each region as the RoI of the original
Fast R-CNN framework. In the RoI pooling layer, features
inside superpixel regions are pooled while features insid-
e the external rectangle but outside the superpixel regions
are pooled as zero. To train this network, we minimize the
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Figure 4. Left: examples of object seeds. They give us features of objects of different locations. However, they mainly focus on key parts
which are helpful for recognition. Right: (a) initial object seeds, (b) object masks predicted by RegionNet, (c) saliency map, (d) refined
object regions via Bayesian framework, (e) segmentation results of PixelNet.
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Figure 5. For images with single object class, salient object regions
may not be consistent with semantic segmentation. In addition,
they may be inaccurate and may locate other objects which are
not included in semantic segmentation datasets. (a) Images, (b)
saliency map of DRFI [11], (c) semantic segmentation.

cross-entropy loss function:

Lr = −
∑
i,j,c

Si,j(c)log(f
r
c (Ri,j |θr)). (1)

By training the RegionNet, common object features can
be mined from the initial object seeds. We then use the
trained network to predict the label of each region of the
training images. In the prediction, some incorrect regions
and regions initially labeled as background can be classified
correctly, thus to expand object regions. Some examples are
shown in Figure 4 (a) and (b), we can see that object regions
predicted by RegionNet contain more regions of objects and
some noisy regions in initial object seeds are corrected. In
this paper, we call these regions as object regions and denote
them as O = {Oi}Ni=1.

Note that since we have the class labels of training im-
ages, we can remove wrong predictions and label them as
background. This will guarantee that the produced object
regions do not contain any non-existent class, which is im-
portant for training the following segmentation network.

4.3. Saliency-Guided Object Region Supplement

Note that the RegionNet is learned from the initial seed
regions which mainly contain key regions of objects. With
the RegionNet, the object regions can be expanded while
there still exists some regions that are ignored. For example,

the initial seed regions mainly focus on heads and hands of
a person, while other regions, such as the body, are often
ignored. After expanding by RegionNet, some regions of
the body are still missing (Figure 4 (b)).

To address this issue, we propose to supplement object
regions by incorporating saliency maps for images with s-
ingle object class. Note that we do not directly use saliency
map as initial localization as previous works [31], since in
some cases, salient object may not be the object class we
need in semantic segmentation, and the saliency map itself
also contains noisy regions which will affect the localiza-
tion accuracy. Some examples are shown in Figure 5.

We address this by proposing saliency-guided object re-
gion supplement method which considers both the mined
object regions and saliency maps under Bayesian frame-
work. In Sec 4.2, we have mined object regions which con-
tains key parts of objects. Based on these key parts, we aim
to supplement object regions with saliency maps. Our idea
is, for a region with high saliency value, if it’s similar with
the mined object objects, then it is more likely to be part of
that object. We can formulate the above hypothesis under
Bayesian optimization [33, 27] as:

p(obj|v) = p(obj)p(v|obj)
p(obj)p(v|obj) + p(bg)p(v|bg)

, (2)

where p(obj) is the saliency map, and p(bg) = 1− p(obj),
p(v|obj) and p(v|bg) are the feature distribution at object
regions and background regions, v is the feature vector,
p(obj|v) is the refined object map which represents the
probability of region with feature v being object. By bi-
narizing the refined object map p(obj|v) with a CRF [14],
we can get refined object regions which incorporate salien-
cy maps to supplement the original object regions. In our
work, we use saliency map of the DRFI method [11] as
in [31].

Some examples are shown in Figure 4, by incorporating
saliency maps, more object regions are included. In this
paper, we call these regions as refined object regions and
denote them as OR = {OR

i }Ni=1.
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Figure 6. Intermediate results of the proposed framework. (a) Image, (b) initial object seeds, (c) expanded object regions predicted by
RegionNet, (d) saliency-guided refined object regions. Note that, the saliency-guided refinement is only applied to images with single
class, for images with multiple classes (3rd and 4th rows), the object regions remain unchanged. Segmentation results of PixelNet in (e)
1st, (f) 2nd, (g) 3rd, (h) 4th and (i) 5th iteration, (j) ground truth.

5. Iterative Learning Framework
The refined object regions give us some reliable local-

ization of object, we can use them as supervision to train the
weakly-supervised semantic segmentation network. While
previous works [13, 30, 5] rely on both localization cues
and class labels to design and train segmentation network,
in our work, we have removed wrong class regions in the
previous RegionNet, thus the refined object regions do not
contain any wrong class. So we can only use the localiza-
tion cues as supervision, this is completely compatible with
fully-supervised framework, and thus we can benefit from
existing fully-supervised architecture. In this paper, we uti-
lize the popular DeepLab-LargeFOV model [2] as the basic
network of our segmentation network, named PixelNet.

Formally, given the training images I = {Ii}Ni=1 and
corresponding refined object regions OR = {OR

i }Ni=1, our
goal is to train the segmentation network fs(I; θs) parame-
terized by θs to model the probability that location u being
the class label c, namely, fsu,c(I|θs) = p(yu = c|I). The
loss function is the cross-entropy loss which encourages the
predictions to match our refined object regions:

Ls = −
1∑C

c=1 |Sc|

C∑
c=1

∑
u∈Sc

log(fsu,c(I|θs)), (3)

where C is the number of classes and Sc is a set of locations
that are labelled with class c in the supervision.

The supervision cues, namely, the object regions, is pro-
duced by the region classification network, it only considers
features inside each region. While in the PixelNet, the w-
hole image is considered and thus the context information
is utilized. Using the trained PixelNet to predict the seg-
mentation masks of the training images, the segmentation
masks will further include more object regions. Some ex-
amples are shown in Figure 4, we can see that the predicted
segmentation masks locate more regions of objects and sup-
press the noisy regions in the previous steps.

Further, we take the predicted segmentation masks as
object seeds and conduct the processes above iteratively.
With iterations, more robust common object features can be
mined thus to produce finer object regions, and the segmen-
tation network is progressively optimized with better super-
vision. Figure 6 shows the results with iterations. With it-
erations, the object regions are expanded and the inaccurate
regions are corrected, so the segmentation results become
more and more accurate. Finally, we use the trained Pixel-
Net of the last iteration for inference and evaluate it in the
experiment section.

6. Experiments
6.1. Setup

We evaluate the proposed MCOF framework on the
PASCAL VOC 2012 image segmentation benchmark [6] ∗.
The dataset contains 20 object classes and 1 background
class. For the segmentation task, it contains 1464 train-
ing, 1449 validation and 1456 test images. Following previ-
ous works [13, 23, 30], we use the augmentation data [10]
which contains 10,582 images as training set. We evaluate
our method and compare with other methods on validation
and test sets for segmentation task in terms of intersection-
over-union averaged on all 21 classes (mIoU).

6.2. Comparison with State-of-the-art Methods

We compare our method with previous state-of-the-
art image-level weakly-supervised semantic segmentation
methods: CCNN [20], EM-Adapt [19], MIL-sppxl [22],
STC [31], DCSM [26], BFBP [25], AF-SS [23], SEC [13],
CBTS [24] and AE-PSL [30]. As we mentioned above, our
PixelNet is completely compatible with fully-supervised
framework and thus we can benefit from existing fully-
supervised architecture. In this paper, we utilize DeepLab-
LargeFOV [2] built on top of both VGG16 and ResNet101

∗The models and results are available at https://wangxiang10.github.io/

https://wangxiang10.github.io/
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CCNN (ICCV’15) [20] 68.5 25.5 18.0 25.4 20.2 36.3 46.8 47.1 48.0 15.8 37.9 21.0 44.5 34.5 46.2 40.7 30.4 36.3 22.2 38.8 36.9 35.3
EM-Adapt (ICCV’15) [19] - - - - - - - - - - - - - - - - - - - - - 38.2
MIL-sppxl (CVPR’15) [22] 77.2 37.3 18.4 25.4 28.2 31.9 41.6 48.1 50.7 12.7 45.7 14.6 50.9 44.1 39.2 37.9 28.3 44.0 19.6 37.6 35.0 36.6
STC (PAMI’16) [31] 84.5 68.0 19.5 60.5 42.5 44.8 68.4 64.0 64.8 14.5 52.0 22.8 58.0 55.3 57.8 60.5 40.6 56.7 23.0 57.1 31.2 49.8
DCSM (ECCV’16) [26] 76.7 45.1 24.6 40.8 23.0 34.8 61.0 51.9 52.4 15.5 45.9 32.7 54.9 48.6 57.4 51.8 38.2 55.4 32.2 42.6 39.6 44.1
BFBP (ECCV’16) [25] 79.2 60.1 20.4 50.7 41.2 46.3 62.6 49.2 62.3 13.3 49.7 38.1 58.4 49.0 57.0 48.2 27.8 55.1 29.6 54.6 26.6 46.6
AF-SS (ECCV’16) [23] - - - - - - - - - - - - - - - - - - - - - 52.6
SEC (ECCV’16) [13] 82.2 61.7 26.0 60.4 25.6 45.6 70.9 63.2 72.2 20.9 52.9 30.6 62.8 56.8 63.5 57.1 32.2 60.6 32.3 44.8 42.3 50.7
CBTS (CVPR’17) [24] 85.8 65.2 29.4 63.8 31.2 37.2 69.6 64.3 76.2 21.4 56.3 29.8 68.2 60.6 66.2 55.8 30.8 66.1 34.9 48.8 47.1 52.8
AE-PSL (CVPR’17) [30] - - - - - - - - - - - - - - - - - - - - - 55.0
Ours:
MCOF-VGG16 85.8 74.1 23.6 66.4 36.6 62.0 75.5 68.5 78.2 18.8 64.6 29.6 72.5 61.6 63.1 55.5 37.7 65.8 32.4 68.4 39.9 56.2
MCOF-ResNet101 87.0 78.4 29.4 68.0 44.0 67.3 80.3 74.1 82.2 21.1 70.7 28.2 73.2 71.5 67.2 53.0 47.7 74.5 32.4 71.0 45.8 60.3

Table 1. Comparison of weakly supervised semantic segmentation methods on PASCAL VOC 2012 val set.
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CCNN (ICCV’15) [20] 70.1 24.2 19.9 26.3 18.6 38.1 51.7 42.9 48.2 15.6 37.2 18.3 43.0 38.2 52.2 40.0 33.8 36.0 21.6 33.4 38.3 35.6
EM-Adapt (ICCV’15) [19] 76.3 37.1 21.9 41.6 26.1 38.5 50.8 44.9 48.9 16.7 40.8 29.4 47.1 45.8 54.8 28.2 30.0 44.0 29.2 34.3 46.0 39.6
MIL-sppxl (CVPR’15) [22] 74.7 38.8 19.8 27.5 21.7 32.8 40.0 50.1 47.1 7.2 44.8 15.8 49.4 47.3 36.6 36.4 24.3 44.5 21.0 31.5 41.3 35.8
STC (PAMI’16) [31] 85.2 62.7 21.1 58.0 31.4 55.0 68.8 63.9 63.7 14.2 57.6 28.3 63.0 59.8 67.6 61.7 42.9 61.0 23.2 52.4 33.1 51.2
DCSM (ECCV’16) [26] 78.1 43.8 26.3 49.8 19.5 40.3 61.6 53.9 52.7 13.7 47.3 34.8 50.3 48.9 69.0 49.7 38.4 57.1 34.0 38.0 40.0 45.1
BFBP (ECCV’16) [25] 80.3 57.5 24.1 66.9 31.7 43.0 67.5 48.6 56.7 12.6 50.9 42.6 59.4 52.9 65.0 44.8 41.3 51.1 33.7 44.4 33.2 48.0
AF-SS (ECCV’16) [23] - - - - - - - - - - - - - - - - - - - - - 52.7
SEC (ECCV’16) [13] 83.5 56.4 28.5 64.1 23.6 46.5 70.6 58.5 71.3 23.2 54.0 28.0 68.1 62.1 70.0 55.0 38.4 58.0 39.9 38.4 48.3 51.7
CBTS (CVPR’17) [24] 85.7 58.8 30.5 67.6 24.7 44.7 74.8 61.8 73.7 22.9 57.4 27.5 71.3 64.8 72.4 57.3 37.0 60.4 42.8 42.2 50.6 53.7
AE-PSL (CVPR’17) [30] - - - - - - - - - - - - - - - - - - - - - 55.7
Ours:
MCOF-VGG16 86.8 73.4 26.6 60.6 31.8 56.3 76.0 68.9 79.4 18.8 62.0 36.9 74.5 66.9 74.9 58.1 44.6 68.3 36.2 64.2 44.0 57.6
MCOF-ResNet101 88.2 80.8 31.4 70.9 34.9 65.7 83.5 75.1 79.0 22.0 70.3 31.7 77.7 72.9 77.1 56.9 41.8 74.9 36.6 71.2 42.6 61.2

Table 2. Comparison of weakly supervised semantic segmentation methods on PASCAL VOC 2012 test set.

as PixelNet. Table 1 and Table 2 show the comparison
on mIoU on PASCAL VOC 2012 validation and test set-
s, respectively. We can see that our method outperform-
s previous methods by a large margin and achieves new
state-of-the-art. When using VGG16 as basic network
(MCOF-VGG16), our method outperforms the second best
method, AE-PSL [30] by 1.2% and 1.9% on val and
test sets, respectively. And when using the more power-
ful ResNet101 (MCOF-ResNet101), the improvement can
reach 5.3% and 5.5%, respectively. For the training sam-
ples, MIL-sppxl [22] used 700K images and STC [31] used
50K images, our method and other methods use 10K im-
ages. We also show some qualitative segmentation result-
s of the proposed framework in Figure 7, we can see that
our weakly-supervised method can produce quite satisfac-
tory segmentation, even in complex images.

6.3. Ablation Studies

6.3.1 Progressive Common Object Features Mining
and Network Training Framework

To evaluate the effectiveness of the proposed progres-
sive common object features mining and network training
framework, we evaluate the RegionNet and PixelNet of each

Image Result Ground Truth Image Result Ground Truth

Figure 7. Qualitative segmentation results of the proposed frame-
work on PASCAL VOC 2012 val set.

iteration on training and validation set. In the ablation s-
tudies, we use VGG16 as base network for PixelNet. The
results are shown in Table 3. We can see that the initial
object seeds are very coarse (14.27% mIoU on train set),
by applying the RegionNet to learn the common features



train val
Initial Object Seeds 14.27 -

iter1 RegionNet 29.1 -
Saliency-guided refinement 34.8 -
PixelNet 48.4 44.4

iter2 RegionNet 53.8 -
PixelNet 57.9 51.6

iter3 RegionNet 58.2 -
PixelNet 60.9 53.3

iter4 RegionNet 61.1 -
PixelNet 63.1 55.5

iter5 RegionNet 62.5 -
PixelNet 63.2 56.2

Table 3. Results of the iteration process. We evaluate the Region-
Net and PixelNet of each iteration on training and validation sets
of PASCAL 2012 dataset.

of objects, the performance achieves 29.1%, by introduc-
ing saliency-guided refinement, it achieves 34.8%, and af-
ter learning with the PixelNet, it achieves 48.4%. And in the
later iterations, the performance improves gradually, which
demonstrates that our method is effective.

6.3.2 Comparison with Direct Iterative Training

We extensively conduct experiments to verify effectiveness
of the proposed progressive common object features mining
and network training framework by comparing with direc-
t iterative training method. For the direct iterative training
method, we start from the segmentation results of our first
iteration, and then in later iterations, use the segmentation
masks of the previous iteration to train the segmentation
network.

Figure 8 shows the comparison. With the iterations, the
performance of the direct iterative method increases slowly
and only reaches a low accuracy, while in the proposed M-
COF, the performance increases rapidly and achieves much
higher accuracy. This result demonstrates that our MCOF
framework is effective. The MCOF progressively mines
common object features from previous object masks and
then to expand more reliable object regions to optimize the
semantic segmentation network, thus the accuracy can in-
crease rapidly to a quite satisfactory results.

6.3.3 Effectiveness of Saliency-Guided Refinement

The initial object seeds only locate discriminative regions
of objects, for example, heads and hands of a person, while
other regions, such as the body, are often ignored. To sup-
plement other object regions, saliency maps are incorpo-
rated with initial object seeds. This is very important for
mining the whole regions of objects. To evaluate the ef-
fectiveness, we conduct experiment on framework without
saliency-guided refinement, and compare the performance
of the PixelNet of each iteration. The result is shown in

1 2 3 4 5
iteration
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65
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Train Set: Direct Iteration 
Val Set: MCOF
Val Set: Direct Iteration

Figure 8. Comparison with direct iterative training method. Our
performance improves rapidly while performance of the direct it-
erative training method increases slowly and only reaches a low
accuracy.

iterations 1 2 3 4 5
w/o saliency refinement 41.8 46.2 47.7 51.5 52.1

w/ saliency refinement 44.4 51.6 53.3 55.5 56.2
Table 4. Evaluate the effectiveness of saliency-guided refinemen-
t. We show the mIoU of the PixelNet of each iteration on Pascal
VOC 2012 val set. Without saliency-guided refinement, the per-
formance will be limited and can not reach satisfactory accuracy.

Table 4. Without incorporating saliency maps, some object
regions will be missing and thus the performance will be
limited and can not reach satisfactory accuracy.

7. Conclusion
In this paper, we propose MCOF, an iterative bottom-

up and top-down framework which tolerates inaccurate
initial localization by iteratively mining common object
features from object seeds. Our method progressively
expands object regions and optimizes segmentation net-
work. In bottom-up step, starting from coarse but dis-
criminative object seeds, we mine common object features
from them to expand object regions. To supplement non-
discriminative object regions, saliency-guided refinemen-
t method is proposed. Then in top-down step, these regions
are used as supervision to train the segmentation network
and predict segmentation masks. The predicted segmenta-
tion masks contain more complete object regions than ini-
tial, so we can further mine common object features from
them. And the processes are conducted iteratively to pro-
gressively correct inaccurate initial localization and pro-
duce more accurate object regions for semantic segmenta-
tion. Our bottom-up and top-down framework bridges the
gap between high-level semantic and low-level appearance
in weakly-supervised semantic segmentation, and achieves
new state-of-the-art performance.
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